SRR11031509 - Chironomus incertipenis
Basic Information
Run: SRR11031509
Assay Type: WGS
Bioproject: PRJNA604900
Biosample: SAMN13972898
Bytes: 2649523739
Center Name: UNIVERSITY OF HAIFA
Sequencing Information
Instrument: Illumina NovaSeq 6000
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: India
Continent: Asia
Location Name: India
Latitude/Longitude: 18.2901 N 73.4956 E
Sample Information
Host: Chironomus incertipenis
Isolation: Mutha River in the neighborhood Vitthal mandir
Biosample Model: Metagenome or environmental
Collection Date: 2019
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0131 |
Ceratitis capitata
Order: Diptera
|
The intestinal microbiota structure was significantly influenced by the probiotic treatment while still maintaining a stable core dominant community of Enterobacteriacea. The colony with these microbiome had the most improved potential functions in terms of gut microbes as well as the carbohydrates active enzymes most improved potential functions.
|
0.20% |
20.2
|
Listeria monocytogenes
Species-level Match
Host Order Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.08% |
20.1
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB1769 |
Calliphoridae
Order: Diptera
|
None
|
4.20% |
19.2
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1291 |
Aedes aegypti
Order: Diptera
|
facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination.
|
0.05% |
18.7
|
Paenibacillus sp. FSL R7-0345
Species-level Match
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.28% |
18.5
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1771 |
Muscidae
Order: Diptera
|
None
|
3.50% |
18.5
|
Paenibacillus sp. lzh-N1
Species-level Match
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.15% |
18.4
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0772 |
Delia antiqua
Order: Diptera
|
showed significant volatile inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.03% |
18.3
|
Paenibacillus sp. H1-7
Species-level Match
Host Order Match
|
RISB0774 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.02% |
18.3
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0113 |
Bactrocera dorsalis
Order: Diptera
|
increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities
|
0.20% |
18.2
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0008 |
Phormia regina
Order: Diptera
|
deterred oviposition by female stable flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.03% |
18.0
|
Spiroplasma poulsonii
Species-level Match
Host Order Match
|
RISB1346 |
Drosophila melanogaster
Order: Diptera
|
S. poulsonii protects its host against parasitoid wasps and nematodes by the action of toxins from the family of Ribosome Inactivating Proteins
|
0.02% |
17.9
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.08% |
17.8
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0009 |
Phormia regina
Order: Diptera
|
prompted oviposition by flies; The flies' oviposition decisions appear to be guided by bacteria-derived semiochemicals as the bacteria
|
0.05% |
17.7
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.02% |
17.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB1411 |
Bactrocera dorsalis
Order: Diptera
|
female Bactrocera dorsalis fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity
|
0.17% |
17.7
|
Spiroplasma poulsonii
Species-level Match
Host Order Match
|
RISB2264 |
Drosophila melanogaster
Order: Diptera
|
Spiroplasma coopts the yolk transport and uptake machinery to colonize the germ line and ensure efficient vertical transmission
|
0.02% |
17.6
|
Spiroplasma poulsonii
Species-level Match
Host Order Match
|
RISB1928 |
Drosophila melanogaster
Order: Diptera
|
supporting the hypothesis that competition for host lipids underlies S. poulsonii-mediated protection against parasitoid wasps
|
0.02% |
17.5
|
Wolbachia
Host Order Match
|
RISB0766 |
Aedes fluviatilis
Order: Diptera
|
The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells.
|
2.54% |
17.5
|
Wolbachia
Host Order Match
|
RISB0779 |
Drosophila melanogaster
Order: Diptera
|
Wolbachia infection affects differential gene expression in Drosophila testis.Genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia
|
2.54% |
17.3
|
Wolbachia
Host Order Match
|
RISB1408 |
Anastrepha fraterculus
Order: Diptera
|
Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI).
|
2.54% |
17.2
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1141 |
Hermetia illucens
Order: Diptera
|
enhance the insect growth performance when reared on an unbalanced nutritionally poor diet
|
0.02% |
16.8
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB0611 |
Bactrocera dorsalis
Order: Diptera
|
may hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis
|
0.03% |
16.8
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1396 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.08% |
16.4
|
Bacillus thuringiensis
Species-level Match
Host Order Match
|
RISB0820 |
Simulium tani
Order: Diptera
|
show resistance to some antibiotics
|
0.68% |
16.4
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB1401 |
Delia antiqua
Order: Diptera
|
suppressed Beauveria bassiana conidia germination and hyphal growth
|
0.02% |
16.4
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0095 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.17% |
16.2
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.06% |
16.1
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0096 |
Bactrocera minax
Order: Diptera
|
egrade phenols in unripe citrus in B. minax larvae
|
0.05% |
16.1
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
0.11% |
16.0
|
Buchnera aphidicola
Species-level Match
Host Order Match
|
RISB0051 |
Episyrphus balteatus
Order: Diptera
|
None
|
0.79% |
15.8
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1872 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.50% |
15.8
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1167 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.20% |
15.8
|
Providencia sp. PROV252
Species-level Match
Host Order Match
|
RISB1574 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.02% |
15.7
|
Chryseobacterium sp. Chry.R1
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.13% |
15.7
|
Providencia rettgeri
Species-level Match
Host Order Match
|
RISB1169 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.11% |
15.7
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB1162 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.08% |
15.6
|
Chryseobacterium sp. 3008163
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.06% |
15.6
|
Chryseobacterium sp. IHB B 17019
Species-level Match
Host Order Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.05% |
15.6
|
Acinetobacter sp. TTH0-4
Species-level Match
Host Order Match
|
RISB2083 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.02% |
15.6
|
Bacillus cereus
Species-level Match
Host Order Match
|
RISB1701 |
Phlebotomus papatasi
Order: Diptera
|
None
|
0.50% |
15.5
|
Staphylococcus hominis
Species-level Match
Host Order Match
|
RISB1881 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.09% |
15.4
|
Enterobacter hormaechei
Species-level Match
Host Order Match
|
RISB1331 |
Zeugodacus cucurbitae
Order: Diptera
|
None
|
0.11% |
15.1
|
Lactiplantibacillus plantarum
Species-level Match
Host Order Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.06% |
15.1
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
4.20% |
13.5
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
3.50% |
13.5
|
Ignatzschineria
Host Order Match
|
RISB0562 |
Chrysomya megacephala
Order: Diptera
|
Ignatzschineria indica is a Gram-negative bacterium commonly associated with maggot infestation and myiasis, a probable marker for myiasis diagnosis
|
0.01% |
13.0
|
Shewanella
Host Order Match
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.04% |
12.6
|
Escherichia coli
Species-level Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
4.20% |
11.9
|
Dysgonomonas
Host Order Match
|
RISB1235 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.14% |
11.4
|
Photorhabdus
Host Order Match
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.04% |
11.3
|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
0.79% |
10.8
|
Aeromonas
Host Order Match
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.21% |
10.8
|
Raoultella
Host Order Match
|
RISB1575 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.03% |
10.8
|
Peribacillus
Host Order Match
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.34% |
10.6
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
0.79% |
10.6
|
Alcaligenes
Host Order Match
|
RISB1871 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.25% |
10.5
|
Vagococcus
Host Order Match
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.18% |
10.2
|
Pseudomonas sp. MPFS
Species-level Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.33% |
10.2
|
Myroides
Host Order Match
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.10% |
10.1
|
Francisella tularensis
Species-level Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.08% |
10.1
|
Apibacter
Host Order Match
|
RISB1138 |
Musca domestica
Order: Diptera
|
None
|
0.07% |
10.1
|
Staphylococcus gallinarum
Species-level Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.06% |
10.1
|
Candidatus Pantoea carbekii
Species-level Match
|
RISB1046 |
Halyomorpha halys
Order: Hemiptera
|
provides its host with essential nutrients, vitamins, cofactors and protection of the most vulnerable stages of early development (1st nymphal stages). Pantoea carbekii is highly stress tolerant, especially once secreted to cover the eggs, by its unique biofilm-formation properties, securing host offspring survival
|
0.04% |
10.0
|
Pectobacterium
Host Order Match
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.03% |
10.0
|
Enterococcus mundtii
Species-level Match
|
RISB1733 |
Spodoptera littoralis
Order: Lepidoptera
|
actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, including the opportunistic pathogens E. faecalis and E. casseliflavus, but not against other gut residents, facilitating the normal development of host gut microbiota
|
0.02% |
10.0
|
Gilliamella apicola
Species-level Match
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.02% |
10.0
|
Candidatus Liberibacter asiaticus
Species-level Match
|
RISB1077 |
Diaphorina citri
Order: Hemiptera
|
CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. Also, Clas impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly
|
0.02% |
10.0
|
Acinetobacter sp. TTH0-4
Species-level Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.02% |
9.7
|
Klebsiella pneumoniae
Species-level Match
|
RISB2459 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
3.50% |
9.5
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.52% |
9.5
|
Streptomyces sp. WAC00303
Species-level Match
|
RISB0943 |
Polybia plebeja
Order: Hymenoptera
|
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
|
0.36% |
9.3
|
Clostridium sp. OS1-26
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.08% |
9.3
|
Clostridium sp. MB40-C1
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.07% |
9.3
|
Clostridium sp. DL-VIII
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.06% |
9.3
|
Streptomyces sp. NBC_01324
Species-level Match
|
RISB2334 |
Sirex noctilio
Order: Hymenoptera
|
degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide
|
0.52% |
9.2
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.13% |
9.1
|
Staphylococcus xylosus
Species-level Match
|
RISB2497 |
Anticarsia gemmatalis
Order: Lepidoptera
|
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
|
0.07% |
9.1
|
Candidatus Schneideria nysicola
Species-level Match
|
RISB0872 |
Nysius sp.
Order: Hemiptera
|
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
|
0.02% |
9.0
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0394 |
Cacopsylla pyricola
Order: Hemiptera
|
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
|
0.03% |
9.0
|
Acinetobacter pittii
Species-level Match
|
RISB1977 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.12% |
8.9
|
Pseudomonas sp. MPFS
Species-level Match
|
RISB2224 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.33% |
8.7
|
Sphingobacterium sp. PCS056
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.09% |
8.4
|
Sphingobacterium sp. UDSM-2020
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.07% |
8.4
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.02% |
8.4
|
Lactobacillus sp. PV034
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.02% |
8.4
|
Sphingobacterium sp. WM
Species-level Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.03% |
8.4
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.39% |
8.3
|
Proteus vulgaris
Species-level Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.07% |
7.8
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.03% |
7.5
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.02% |
7.2
|
Apilactobacillus kunkeei
Species-level Match
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.04% |
7.1
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.02% |
7.0
|
Snodgrassella alvi
Species-level Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
0.02% |
6.9
|
Pseudomonas sp. MPFS
Species-level Match
|
RISB0700 |
Nilaparvata lugens
Order: Hemiptera
|
Pseudomonas sp. composition and abundance correlated with BPH survivability
|
0.33% |
6.8
|
Blattabacterium sp. (Mastotermes darwiniensis)
Species-level Match
|
RISB1534 |
Periplaneta fuliginosa
Order: Blattodea
|
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
|
0.02% |
6.7
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.03% |
6.6
|
Frischella perrara
Species-level Match
|
RISB2028 |
Diceroprocta semicincta
Order: Hemiptera
|
causes the formation of a scab-like structure on the gut epithelium of its host
|
0.02% |
6.6
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1794 |
Cardiocondyla obscurior
Order: Hymenoptera
|
Contributes to cuticle formation and is responsible for host invasive success
|
0.02% |
6.6
|
Xenorhabdus bovienii
Species-level Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.02% |
6.5
|
Blattabacterium cuenoti
Species-level Match
|
RISB0518 |
Cryptocercus punctulatus
Order: Blattodea
|
collaborative arginine biosynthesis
|
0.39% |
6.1
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1795 |
Cardiocondyla obscurior
Order: Hymenoptera
|
a contribution of Westeberhardia to cuticle formation
|
0.02% |
6.1
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.07% |
6.1
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1417 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.05% |
6.0
|
Candidatus Pantoea carbekii
Species-level Match
|
RISB2115 |
Halyomorpha halys
Order: Hemiptera
|
the primary bacterial symbiont of H. halys
|
0.04% |
5.9
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.03% |
5.8
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
0.65% |
5.7
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.05% |
5.3
|
Arsenophonus nasoniae
Species-level Match
|
RISB0428 |
Nasonia vitripennis
Order: Hymenoptera
|
male killing
|
0.03% |
5.3
|
Burkholderia
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.19% |
5.2
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.16% |
5.2
|
Flavobacterium johnsoniae
Species-level Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.09% |
5.1
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.17% |
5.1
|
Candidatus Karelsulcia muelleri
Species-level Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
0.04% |
5.0
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0748 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.03% |
5.0
|
Arsenophonus nasoniae
Species-level Match
|
RISB0366 |
Pachycrepoideus vindemmiae
Order: Hymenoptera
|
None
|
0.03% |
5.0
|
Gilliamella apicola
Species-level Match
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Candidatus Liberibacter asiaticus
Species-level Match
|
RISB0750 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Snodgrassella alvi
Species-level Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Candidatus Legionella polyplacis
Species-level Match
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.02% |
5.0
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Rickettsia typhi
Species-level Match
|
RISB1906 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Apibacter
|
RISB0603 |
Apis cerana
Order: Hymenoptera
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
|
0.07% |
4.6
|
Burkholderia
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.19% |
4.5
|
Burkholderia
|
RISB0402 |
Riptortus pedestris
Order: Hemiptera
|
symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host
|
0.19% |
4.5
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.04% |
3.8
|
Raoultella
|
RISB2226 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.03% |
3.4
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.03% |
3.4
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
0.06% |
3.2
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
0.06% |
3.1
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.76% |
3.1
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.76% |
2.9
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.04% |
2.8
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
0.06% |
2.8
|
Bacteroides
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.76% |
2.8
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.04% |
2.6
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
0.58% |
2.6
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.12% |
2.5
|
Nocardia
|
RISB0947 |
Acromyrmex
Order: Hymenoptera
|
Pseudonocardia in the Acromyrmex leaf-cutter ants as a protective partner against the entomopathogenic fungus Metarhizium
|
0.02% |
2.4
|
Vibrio
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.92% |
2.2
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
0.58% |
2.2
|
Blautia
|
RISB0091 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.10% |
2.2
|
Nocardia
|
RISB1218 |
Mycocepurus smithii
Order: Hymenoptera
|
produce secondary metabolites with antibiotic activity that protects the fungus garden against pathogens
|
0.02% |
2.1
|
Delftia
|
RISB0083 |
Osmia cornifrons
Order: Hymenoptera
|
be known to exhibit antibiotic activity, suggesting their potential protective role against pathogens
|
0.03% |
2.1
|
Corynebacterium
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.20% |
2.0
|
Micrococcus
|
RISB2276 |
Ostrinia nubilalis
Order: Lepidoptera
|
extreme cellulolytic enzymes, at extreme (pH 12) conditions, exhibited cellulolytic properties
|
0.04% |
1.9
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.20% |
1.9
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
0.58% |
1.8
|
Nostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.34% |
1.8
|
Halomonas
|
RISB1808 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
0.31% |
1.6
|
Leuconostoc
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.04% |
1.5
|
Delftia
|
RISB0806 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-19 oxidation pathway
|
0.03% |
1.5
|
Raoultella
|
RISB1672 |
Spodoptera frugiperda
Order: Lepidoptera
|
downregulated POX but upregulated trypsin PI in this plant species
|
0.03% |
1.4
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.28% |
1.3
|
Delftia
|
RISB1754 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.03% |
1.2
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.03% |
1.1
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.21% |
1.0
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.20% |
1.0
|
Nocardioides
|
RISB1914 |
Hyles euphorbiae
Order: Lepidoptera
|
able to degrade alkaloids and/or latex
|
0.05% |
0.8
|
Mycobacterium
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.04% |
0.7
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.33% |
0.7
|
Turicibacter
|
RISB0451 |
Odontotaenius disjunctus
Order: Coleoptera
|
degrading ellulose and xylan
|
0.03% |
0.6
|
Aeromonas
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.21% |
0.6
|
Halomonas
|
RISB1374 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.31% |
0.3
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.31% |
0.3
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.17% |
0.2
|
Dysgonomonas
|
RISB1481 |
Brachinus elongatulus
Order: Coleoptera
|
None
|
0.14% |
0.1
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.12% |
0.1
|
Metabacillus
|
RISB0902 |
Myzus persicae
Order: Hemiptera
|
None
|
0.11% |
0.1
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.08% |
0.1
|
Apibacter
|
RISB0604 |
Apis cerana
Order: Hymenoptera
|
None
|
0.07% |
0.1
|
Ralstonia
|
RISB0243 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.07% |
0.1
|
Candidatus Phytoplasma
|
RISB1620 |
Cacopsylla pyricola
Order: Hemiptera
|
None
|
0.07% |
0.1
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.06% |
0.1
|
Candidatus Arthromitus
|
RISB2613 |
Multiple species
Order: None
|
None
|
0.04% |
0.0
|
Lonsdalea
|
RISB1321 |
Vespa mandarinia
Order: Hymenoptera
|
None
|
0.03% |
0.0
|
Candidatus Profftia
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.