SRR10017628 - Cassida sp.

Basic Information

Run: SRR10017628

Assay Type: WGS

Bioproject: PRJNA561424

Biosample: SAMN12618099

Bytes: 815808038

Center Name: EMORY UNIVERSITY

Sequencing Information

Instrument: Illumina HiSeq 2500

Library Layout: PAIRED

Library Selection: RANDOM

Platform: ILLUMINA

Geographic Information

Country: Japan

Continent: Asia

Location Name: Japan: Tokyo

Latitude/Longitude: 35.6762 N 139.6503 E

Sample Information

Host: Cassida sp.

Isolation: -

Biosample Model: Metagenome or environmental

Collection Date: 2017-05-01

Taxonomic Classification

Potential Symbionts

Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:

  • Relative abundance in sample
  • Species-level matches with known symbionts
  • Host insect order matches
  • Functional record completeness

Note: Showing top 3 highest scoring records for each species/genus

Symbiont Name Record Host Species Function Abundance
Score
Buchnera aphidicola
RISB0236
Acyrthosiphon pisum
Order: Hemiptera
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
15.69%
25.7
Buchnera aphidicola
RISB2485
Macrosiphum euphorbiae
Order: Hemiptera
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
15.69%
25.5
Buchnera aphidicola
RISB0685
Acyrthosiphon pisum
Order: Hemiptera
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
15.69%
24.5
Escherichia coli
RISB0128
Tribolium castaneum
Order: Coleoptera
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
2.90%
20.6
Pseudomonas sp. CIP-10
RISB1622
Dendroctonus valens
Order: Coleoptera
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
0.32%
20.1
Stenotrophomonas sp. 169
RISB0325
Pharaxonotha floridana
Order: Coleoptera
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
0.07%
20.1
Acinetobacter sp. ACNIH2
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.17%
19.9
Acinetobacter sp. TTH0-4
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.11%
19.8
Acinetobacter sp. WCHA45
RISB0730
Curculio chinensis
Order: Coleoptera
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
0.06%
19.7
Bacillus sp. 7D3
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
2.06%
19.7
Lactococcus lactis
RISB0967
Oulema melanopus
Order: Coleoptera
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
0.86%
19.4
Pseudomonas sp. CIP-10
RISB2224
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.32%
18.7
Bacillus sp. 7D3
RISB0805
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-8 oxidation pathway
2.06%
18.5
Stenotrophomonas sp. 169
RISB2228
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.07%
18.4
Sphingobacterium sp. ML3W
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.06%
18.4
Sphingobacterium sp. SRCM116780
RISB2227
Leptinotarsa decemlineata
Order: Coleoptera
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
0.03%
18.4
Enterococcus faecalis
RISB0497
Cryptolestes ferrugineus
Order: Coleoptera
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
0.34%
17.9
Morganella morganii
RISB1867
Costelytra zealandica
Order: Coleoptera
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
0.06%
17.9
Bacillus sp. 1NLA3E
RISB1645
Osphranteria coerulescens
Order: Coleoptera
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
0.21%
17.8
Lactococcus lactis
RISB1430
Rhynchophorus ferrugineus
Order: Coleoptera
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
0.86%
17.8
Enterococcus faecalis
RISB2042
Harpalus pensylvanicus
Order: Coleoptera
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
0.34%
17.7
Klebsiella pneumoniae
RISB1153
Tenebrio molitor
Order: Coleoptera
degrading plastics
1.73%
17.1
Morganella morganii
RISB1548
Costelytra zealandica
Order: Coleoptera
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
0.06%
16.8
Streptomyces sp. T12
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.26%
16.8
Morganella morganii
RISB1868
Costelytra zealandica
Order: Coleoptera
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
0.06%
16.8
Enterococcus faecalis
RISB0374
Tribolium castaneum
Order: Coleoptera
modulates host phosphine resistance by interfering with the redox system
0.34%
16.8
Pseudomonas sp. CIP-10
RISB0815
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-15 oxidation pathway
0.32%
16.7
Streptomyces sp. WAC00303
RISB0777
Copris tripartitus
Order: Coleoptera
contribute brood ball hygiene by inhibiting fungal parasites in the environment
0.07%
16.7
Paenibacillus sp. PK4536
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.12%
16.5
Stenotrophomonas sp. 169
RISB0816
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-20 oxidation pathway
0.07%
16.5
Paenibacillus sp. D2_2
RISB0813
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-9 oxidation pathway
0.07%
16.5
Lactococcus lactis
RISB1065
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.86%
16.1
Staphylococcus hominis
RISB1071
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.14%
15.4
Staphylococcus epidermidis
RISB1070
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.09%
15.3
Wolbachia
RISB1452
Octodonta nipae
Order: Coleoptera
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
0.51%
13.7
Proteus
RISB0001
Leptinotarsa decemlineata
Order: Coleoptera
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
0.21%
12.9
Wolbachia
RISB2107
Sitophilus zeamais
Order: Coleoptera
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
0.51%
12.9
Candidatus Nardonella
RISB2449
Euscepes postfasciatus
Order: Coleoptera
endosymbiont is involved in normal growth and development of the host weevil
0.83%
12.4
Candidatus Nardonella
RISB1931
Lissorhoptrus oryzophilus
Order: Coleoptera
might be not playing critical roles in the reproduction of L. oryzophilus
0.83%
12.3
Bacteroides
RISB1183
Oryzaephilus surinamensis
Order: Coleoptera
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
0.20%
12.2
Escherichia coli
RISB1339
Manduca sexta
Order: Lepidoptera
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
2.90%
12.2
Vibrio
RISB1810
Monochamus galloprovincialis
Order: Coleoptera
Have the ability for degradation of cellulose, proteins and starch
0.90%
12.2
Wolbachia
RISB1282
Ips sp.
Order: Coleoptera
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
0.51%
12.2
Rhizobium
RISB0135
Coccinella septempunctata
Order: Coleoptera
be commonly found in plant roots and they all have nitrogen fixation abilities
0.34%
11.9
Klebsiella pneumoniae
RISB2185
Scirpophaga incertulas
Order: Lepidoptera
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
1.73%
11.7
Candidatus Nardonella
RISB1668
Multiple species
Order: Coleoptera
Possibly tyrosine precursor provisioning
0.83%
11.6
Nostoc
RISB0812
Hypothenemus hampei
Order: Coleoptera
might contribute to caffeine breakdown using the C-18 oxidation pathway
0.19%
11.6
Turicibacter
RISB0451
Odontotaenius disjunctus
Order: Coleoptera
degrading  ellulose and xylan
0.09%
10.7
Lysinibacillus
RISB1066
Oryctes rhinoceros
Order: Coleoptera
gut microbe
0.36%
10.6
Aeromonas
RISB1145
Tenebrio molitor
Order: Coleoptera
degrading plastics
0.19%
10.6
Listeria monocytogenes
RISB2308
Drosophila melanogaster
Order: Diptera
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
0.49%
10.5
Francisella tularensis
RISB1907
Bombyx mori
Order: Lepidoptera
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
0.37%
10.4
Paenibacillus polymyxa
RISB2195
Termitidae
Order: Blattodea
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
0.07%
10.1
Candidatus Pantoea carbekii
RISB1046
Halyomorpha halys
Order: Hemiptera
provides its host with essential nutrients, vitamins, cofactors and protection of the most vulnerable stages of early development (1st nymphal stages). Pantoea carbekii is highly stress tolerant, especially once secreted to cover the eggs, by its unique biofilm-formation properties, securing host offspring survival
0.04%
10.0
Clostridium sp. 'deep sea'
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.21%
9.4
Candidatus Nasuia deltocephalinicola
RISB2283
Nephotettix cincticeps
Order: Hemiptera
Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect
0.05%
9.4
Clostridium sp. AWRP
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.14%
9.4
Pantoea ananatis
RISB1671
Spodoptera frugiperda
Order: Lepidoptera
modulate plant defense, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomatoresponses
0.16%
9.3
Clostridium sp. DL-VIII
RISB2301
Pyrrhocoris apterus
Order: Hemiptera
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
0.06%
9.3
Streptomyces sp. T12
RISB0943
Polybia plebeja
Order: Hymenoptera
this bacterium produces antimicrobial compounds that are active against Hirsutella citriformis, a natural fungal enemy of its host, and the human pathogens Staphylococcus aureus and Candida albicans
0.26%
9.2
Candidatus Carsonella ruddii
RISB0394
Cacopsylla pyricola
Order: Hemiptera
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
0.24%
9.2
Mammaliicoccus sciuri
RISB0075
Bombyx mori
Order: Lepidoptera
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
0.07%
9.1
Candidatus Schneideria nysicola
RISB0872
Nysius sp.
Order: Hemiptera
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
0.04%
9.1
Staphylococcus xylosus
RISB2497
Anticarsia gemmatalis
Order: Lepidoptera
allow the adaptation of this insect to plants rich in protease inhibitors, minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean
0.03%
9.0
Blattabacterium cuenoti
RISB0133
Panesthiinae
Order: Blattodea
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
0.87%
8.8
Escherichia coli
RISB2120
Galleria mellonella
Order: Lepidoptera
mediate trans-generational immune priming
2.90%
8.7
Candidatus Portiera aleyrodidarum
RISB1193
Bemisia tabaci
Order: Hemiptera
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
0.31%
8.7
Lactobacillus sp. PV034
RISB0292
Lymantria dispar asiatica
Order: Lepidoptera
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
0.04%
8.4
Spiroplasma sp. TIUS-1
RISB1353
Cephus cinctus
Order: Hymenoptera
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
0.05%
8.4
Wigglesworthia glossinidia
RISB0369
Glossina morsitans
Order: Diptera
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
0.15%
8.3
Klebsiella pneumoniae
RISB2459
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
1.73%
7.7
Spiroplasma ixodetis
RISB0842
Dactylopius coccus
Order: Hemiptera
use the T4SS to interact with the Dactylopius cells, which show a strong interaction and molecular signaling in the symbiosis
0.10%
7.6
Chromobacterium sp. IIBBL 290-4
RISB1453
Aedes aegypti
Order: Diptera
aminopeptidase secreted by a Chromobacterium species suppresses DENV infection by directly degrading the DENV envelope protein
0.04%
7.6
Candidatus Nasuia deltocephalinicola
RISB2282
Nephotettix cincticeps
Order: Hemiptera
With the antibiotic, nymphal growth was remarkably retarded, and a number of nymphs either died or failed to attain adulthood
0.05%
7.6
Candidatus Portiera aleyrodidarum
RISB2289
Bemisia tabaci
Order: Hemiptera
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
0.31%
7.5
Psychrobacter sp. KH172YL61
RISB1773
Calliphoridae
Order: Diptera
it shows physiological adaptation to survival in warmer temperatures and has been previously associated with food spoilage
0.05%
7.5
Candidatus Tachikawaea gelatinosa
RISB2112
Urostylis westwoodii
Order: Hemiptera
the symbiont localizes to a specialized midgut region and supplies essential amino acids deficient in the host's diet
0.13%
7.5
Candidatus Nasuia deltocephalinicola
RISB0262
Maiestas dorsalis
Order: Hemiptera
are responsible for synthesizing two essential amino acids (histidine and methionine) and riboflavin (vitamin B2)
0.05%
7.3
Candidatus Portiera aleyrodidarum
RISB1973
Bemisia tabaci
Order: Hemiptera
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
0.31%
7.3
Salmonella enterica
RISB0413
Melanaphis sacchari
Order: Hemiptera
None
2.29%
7.3
Wigglesworthia glossinidia
RISB1786
Glossina morsitans
Order: Diptera
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
0.15%
7.2
Pantoea ananatis
RISB0515
Laodelphax striatellus
Order: Hemiptera
pathogenic to the host insect, raises the possibility of using the Lstr strain as a biological agent
0.16%
7.2
Candidatus Ishikawella capsulata
RISB2368
Megacopta punctatissima
Order: Hemiptera
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
0.08%
7.0
Candidatus Westeberhardia cardiocondylae
RISB1794
Cardiocondyla obscurior
Order: Hymenoptera
Contributes to cuticle formation and is responsible for host invasive success
0.17%
6.7
Blattabacterium cuenoti
RISB0518
Cryptocercus punctulatus
Order: Blattodea
collaborative arginine biosynthesis
0.87%
6.6
Blattabacterium cuenoti
RISB0093
Blattella germanica
Order: Blattodea
obligate endosymbiont
0.87%
6.3
Wigglesworthia glossinidia
RISB2577
Glossina brevipalpis
Order: Diptera
provide its tsetse host with metabolites such as vitamins
0.15%
6.3
Candidatus Westeberhardia cardiocondylae
RISB1795
Cardiocondyla obscurior
Order: Hymenoptera
a contribution of Westeberhardia to cuticle formation
0.17%
6.2
Providencia rettgeri
RISB1001
Anastrepha obliqua
Order: Diptera
improve the sexual competitiveness of males
0.17%
6.0
Candidatus Ishikawella capsulata
RISB2543
Megacopta punctatissima
Order: Hemiptera
Enhance pest status of the insect host
0.08%
5.8
Chryseobacterium sp. ZHDP1
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.18%
5.7
Providencia rettgeri
RISB1169
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.17%
5.7
Chryseobacterium sp. LJ668
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.16%
5.7
Chryseobacterium sp. CY350
RISB2092
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.13%
5.7
Providencia alcalifaciens
RISB1168
Bactrocera dorsalis
Order: Diptera
Promote the growth of larvae
0.07%
5.6
Rickettsia sp. MEAM1 (Bemisia tabaci)
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.19%
5.6
Rickettsia sp. Oklahoma-10
RISB0704
Aphis craccivora
Order: Hemiptera
facultative symbiont
0.10%
5.5
Arsenophonus
RISB1047
Aphis gossypii
Order: Hemiptera
secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring. H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
0.48%
5.5
Candidatus Erwinia haradaeae
RISB1632
Lachninae
Order: Hemiptera
None
0.39%
5.4
Candidatus Annandia adelgestsuga
RISB2207
Adelges tsugae
Order: Hemiptera
None
0.35%
5.4
Candidatus Annandia pinicola
RISB1661
Adelgidae
Order: Hemiptera
None
0.33%
5.3
Candidatus Carsonella ruddii
RISB0748
Diaphorina citri
Order: Hemiptera
None
0.24%
5.2
Rickettsia bellii
RISB1897
Bemisia tabaci
Order: Hemiptera
None
0.22%
5.2
Arsenophonus
RISB1300
Aphis gossypii
Order: Hemiptera
Arsenophonus sp. can have different effects on its hosts, including obligate mutualism in blood-sucking insects, improving the performance of whiteflies, or through facultative mutualism by protecting psyllids against parasitoid attacks.
0.48%
5.2
Gilliamella
RISB0102
Apis mellifera
Order: Hymenoptera
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
0.20%
5.2
Candidatus Karelsulcia muelleri
RISB1591
Philaenus spumarius
Order: Hemiptera
None
0.13%
5.1
Candidatus Palibaumannia cicadellinicola
RISB1594
Graphocephala coccinea
Order: Hemiptera
None
0.10%
5.1
Flavobacterium johnsoniae
RISB0659
Melanaphis bambusae
Order: Hemiptera
None
0.09%
5.1
Candidatus Legionella polyplacis
RISB1687
Polyplax serrata
Order: Phthiraptera
None
0.08%
5.1
Sphingobacterium multivorum
RISB0671
Melanaphis bambusae
Order: Hemiptera
None
0.07%
5.1
Acetobacter
RISB1865
Drosophila melanogaster
Order: Diptera
The bacterial cells may thus be able to ameliorate the pH of the acidic region, by the release of weak bases.Additionally, the bacteria have a complex relationship with physiological processes which may affect ionic homeostasis in the gut, such as nutrition and immune function
0.03%
5.0
Treponema
RISB2377
termite
Order: Blattodea
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
0.14%
5.0
Arsenophonus
RISB1334
Ommatissus lybicus
Order: Hemiptera
the removal of Arsenophonus increased the developmental time of the immature stages and reduced the values of different life-history parameters including nymphal survival rate and adult longevity in the host
0.48%
4.6
Apibacter
RISB0603
Apis cerana
Order: Hymenoptera
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
0.09%
4.6
Candidatus Blochmanniella
RISB2542
Camponotus
Order: Hymenoptera
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
1.26%
4.4
Candidatus Blochmanniella
RISB1827
Camponotus floridanus
Order: Hymenoptera
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
1.26%
4.3
Weissella
RISB1982
Blattella germanica
Order: Blattodea
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
0.41%
4.2
Candidatus Blochmanniella
RISB2448
Camponotus floridanus
Order: Hymenoptera
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
1.26%
4.0
Photorhabdus
RISB2532
Manduca sexta
Order: Lepidoptera
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
0.08%
3.8
Acetobacter
RISB0961
Drosophila melanogaster
Order: Diptera
The exist of Acetobacter had a balancing effect on food ingestion when carbohydrate levels were high in the warmer months, stabilizing fitness components of flies across the year.
0.03%
3.6
Pectobacterium
RISB1889
Pseudococcus longispinus
Order: Hemiptera
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
0.22%
3.6
Bartonella
RISB1673
Apis mellifera
Order: Hymenoptera
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
0.70%
3.3
Weissella
RISB0641
Formica
Order: Hymenoptera
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
0.41%
3.2
Photorhabdus
RISB2573
Manduca sexta
Order: Lepidoptera
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
0.08%
2.8
Streptococcus
RISB2625
Galleria mellonella
Order: Lepidoptera
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
0.81%
2.8
Shewanella
RISB1924
Anopheles gambiae
Order: Diptera
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
0.08%
2.6
Bacteroides
RISB0256
Leptocybe invasa
Order: Hymenoptera
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
0.20%
2.5
Streptococcus
RISB2624
Reticulitermes flavipes
Order: Blattodea
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
0.81%
2.5
Lachnospira
RISB2110
Blattella germanica
Order: Blattodea
Hydrolyze polysaccharide; assist digestion; synthesize acetate, propionate, and butyrate
0.65%
2.4
Liberibacter
RISB2310
Bactericerca cockerelli
Order: Hemiptera
manipulate plant signaling and defensive responses, suppress accumulation of defense transcripts like JA and SA
0.11%
2.4
Proteus
RISB2315
Aedes aegypti
Order: Diptera
upregulates AMP gene expression, resulting in suppression of DENV infection in the mosquito gut epithelium
0.21%
2.3
Bacteroides
RISB0090
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.20%
2.3
Acetobacter
RISB0184
Drosophila melanogaster
Order: Diptera
enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA)
0.03%
2.3
Blautia
RISB0091
Hyphantria cunea
Order: Lepidoptera
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
0.12%
2.2
Apilactobacillus
RISB0475
Apis mellifera
Order: Hymenoptera
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
0.07%
2.1
Streptococcus
RISB2604
Homona magnanima
Order: Lepidoptera
influence the growth of Bacillus thuringiensis in the larvae
0.81%
2.0
Xenorhabdus
RISB1372
Spodoptera frugiperda
Order: Lepidoptera
the products of the symbiont gene cluster inhibit Spodoptera frugiperda phenoloxidase activity
0.06%
1.9
Candidatus Zinderia
RISB2451
Clastoptera arizonana
Order: Hemiptera
Zinderia had gene homologs for the production of tryptophan, methionine, and histidine
0.05%
1.8
Liberibacter
RISB2524
Bactericera cockerelli
Order: Hemiptera
Reduced expression of plant defensive gene in tomato probably for psyllid success
0.11%
1.7
Xenorhabdus
RISB2270
Acyrthosiphon pisum
Order: Hemiptera
have the gene PIN1 encoding the protease inhibitor protein against aphids
0.06%
1.5
Paraclostridium
RISB0028
Sesamia inferens
Order: Lepidoptera
degrade Chlorpyrifos and Chlorantraniliprole in vitro
0.44%
1.5
Lysinibacillus
RISB1416
Psammotermes hypostoma
Order: Blattodea
isolates showed significant cellulolytic activity
0.36%
1.3
Photorhabdus
RISB0532
Drosophila melanogaster
Order: Diptera
produces toxin complex (Tc) toxins as major virulence factors
0.08%
1.3
Pectobacterium
RISB0798
Pseudoregma bambucicola
Order: Hemiptera
may help P. bambucicola feed on the stalks of bamboo
0.22%
1.3
Proteus
RISB2460
Bombyx mori
Order: Lepidoptera
degradation of cellulose, xylan, pectin and starch
0.21%
1.2
Liberibacter
RISB2333
Cacopsylla pyri
Order: Hemiptera
behaves as an endophyte rather than a pathogen
0.11%
1.0
Aeromonas
RISB2456
Bombyx mori
Order: Lepidoptera
able to utilize the CMcellulose and xylan
0.19%
1.0
Gordonia
RISB1912
Hyles euphorbiae
Order: Lepidoptera
able to degrade alkaloids and/or latex
0.05%
0.8
Cedecea
RISB1570
Bactrocera tau
Order: Diptera
could attract male and female B. tau
0.04%
0.8
Aeromonas
RISB2086
Aedes aegypti
Order: Diptera
axenic larvae cannot develop
0.19%
0.8
Priestia
RISB0839
Helicoverpa armigera
Order: Lepidoptera
producing amylase
0.25%
0.6
Peribacillus
RISB1877
Aedes aegypti
Order: Diptera
gut microbiome
0.27%
0.6
Gilliamella
RISB0620
Spodoptera frugiperda
Order: Lepidoptera
degrade amygdalin
0.20%
0.5
Weissella
RISB1566
Liometopum apiculatum
Order: Hymenoptera
None
0.41%
0.4
Candidatus Zinderia
RISB1640
Clastoptera arizonana
Order: Hemiptera
Nitrogen-Fixing
0.05%
0.4
Pectobacterium
RISB1772
Muscidae
Order: Diptera
None
0.22%
0.2
Gilliamella
RISB1945
Apis cerana
Order: Hymenoptera
None
0.20%
0.2
Candidatus Profftia
RISB1664
Adelgidae
Order: Hemiptera
None
0.17%
0.2
Candidatus Arthromitus
RISB2613
Multiple species
Order: None
None
0.17%
0.2
Treponema
RISB0169
Reticulitermes flaviceps
Order: Blattodea
None
0.14%
0.1
Chroococcidiopsis
RISB0487
Ceratitis capitata
Order: Diptera
None
0.10%
0.1
Apibacter
RISB0604
Apis cerana
Order: Hymenoptera
None
0.09%
0.1
Myroides
RISB0626
Musca altica
Order: Diptera
None
0.08%
0.1
Helicobacter
RISB0662
Melanaphis bambusae
Order: Hemiptera
None
0.07%
0.1
Cedecea
RISB0504
Plutella xylostella
Order: Lepidoptera
None
0.04%
0.0
Cupriavidus
RISB0694
Alydus tomentosus
Order: Hemiptera
None
0.04%
0.0

Download Files

Taxonomic Analysis Files

Kraken Report

Detailed taxonomic classification

Download
Krona HTML

Interactive taxonomic visualization

Download
Bracken Results

Species abundance estimation

Download

Assembly & Gene Prediction

Assembled Contigs

MEGAHIT assembly results

Download
Predicted Genes

Gene sequences (FASTA)

Download
Gene Annotation

GFF format annotation

Download

Genome Binning

MetaBAT2 Bins

Compressed genome bins

Download
Bin Information

Quality metrics and statistics

Download

Raw Sequencing Files

Direct download from NCBI SRA
Run ID File Size
SRR10017628
778.0 MB Download

Raw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.

Back to Metagenomes List
Back to Table