SRR10017621 - Discomorpha sp.
Basic Information
Run: SRR10017621
Assay Type: WGS
Bioproject: PRJNA561424
Biosample: SAMN12618094
Bytes: 2454868990
Center Name: EMORY UNIVERSITY
Sequencing Information
Instrument: Illumina HiSeq 2500
Library Layout: PAIRED
Library Selection: RANDOM
Platform: ILLUMINA
Geographic Information
Country: Panama
Continent: North America
Location Name: Panama: Panama City
Latitude/Longitude: 8.9824 N 79.5199 W
Sample Information
Host: Discomorpha sp.
Isolation: -
Biosample Model: Metagenome or environmental
Collection Date: 2017-05-01
Taxonomic Classification
Potential Symbionts
About Potential Symbionts
This table shows potential symbiont identified in the metagenome sample. Matches are scored based on:
- Relative abundance in the sample
- Species-level matches with known symbionts
- Host insect order matches with reference records
- Completeness and richness of functional records
Based on our current records database, this section aims to identify potential functional symbionts in this metagenome sample, with scoring based on:
- Relative abundance in sample
- Species-level matches with known symbionts
- Host insect order matches
- Functional record completeness
Note: Showing top 3 highest scoring records for each species/genus
Symbiont Name | Record | Host Species | Function | Abundance |
Score
Score Composition:
Higher scores indicate stronger symbiotic relationship potential |
---|---|---|---|---|---|
Buchnera aphidicola
Species-level Match
|
RISB0236 |
Acyrthosiphon pisum
Order: Hemiptera
|
Buchnera the nutritional endosymbiont of A. pisum is located inside of bacteriocytes and requires aspartate from the aphid host, because it cannot make it de novo. Further Buchnera needs aspartate for the biosynthesis of the essential amino acids lysine and threonine, which the aphid and Buchnera require for survival
|
10.66% |
20.7
|
Pseudomonas sp. CIP-10
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.76% |
20.6
|
Buchnera aphidicola
Species-level Match
|
RISB2485 |
Macrosiphum euphorbiae
Order: Hemiptera
|
symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance
|
10.66% |
20.4
|
Pseudomonas sp. YeP6b
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.51% |
20.3
|
Pantoea sp. At-9b
Species-level Match
Host Order Match
|
RISB0736 |
Psylliodes chrysocephala
Order: Coleoptera
|
Laboratory-reared and field-collected P. chrysocephala all contained three core genera Pantoea, Acinetobacter and Pseudomonas, and reintroduction of Pantoea sp. Pc8 in antibiotic-fed beetles restored isothiocyanate degradation ability in vivo (by 16S rRNA gene sequencing and LC-MS)
|
0.10% |
20.1
|
Serratia sp. FDAARGOS_506
Species-level Match
Host Order Match
|
RISB0308 |
Rhopalotria slossonae
Order: Coleoptera
|
suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway,including desferrioxamine B, which may help tolerating diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores
|
0.02% |
20.0
|
Staphylococcus gallinarum
Species-level Match
Host Order Match
|
RISB0945 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine; A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus
|
0.01% |
20.0
|
Pseudomonas sp. HR96
Species-level Match
Host Order Match
|
RISB1622 |
Dendroctonus valens
Order: Coleoptera
|
volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae
|
0.03% |
19.9
|
Acinetobacter sp. KCTC 92772
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.08% |
19.8
|
Acinetobacter sp. Marseille-Q1620
Species-level Match
Host Order Match
|
RISB0730 |
Curculio chinensis
Order: Coleoptera
|
Acinetobacter sp. in C. chinensis enriched after treating with saponin, and when incubating bacteria with saponin for 72 h, saponin content significantly decreased from 4.054 to 1.867 mg/mL (by 16S rRNA metagenome sequencing and HPLC)
|
0.02% |
19.7
|
Escherichia coli
Species-level Match
Host Order Match
|
RISB0128 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
1.75% |
19.5
|
Buchnera aphidicola
Species-level Match
|
RISB0685 |
Acyrthosiphon pisum
Order: Hemiptera
|
It supplies the host with vitamins and essential amino acids, such as arginine and methionine that aphids cannot synthesize or derive insufficiently from their diet, the phloem sap of plants
|
10.66% |
19.5
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB0967 |
Oulema melanopus
Order: Coleoptera
|
contribute to the decomposition of complex carbohydrates, fatty acids, or polysaccharides in the insect gut. It might also contribute to the improvement of nutrient availability.
|
0.23% |
18.8
|
Sphingobacterium sp. PCS056
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.20% |
18.5
|
Sphingobacterium sp. ML3W
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.03% |
18.4
|
Sphingobacterium sp. DR205
Species-level Match
Host Order Match
|
RISB2227 |
Leptinotarsa decemlineata
Order: Coleoptera
|
Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum)
|
0.02% |
18.4
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0517 |
Leptinotarsa decemlineata
Order: Coleoptera
|
affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt)
|
0.13% |
18.0
|
Bacillus sp. 7D3
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.38% |
18.0
|
Bacillus sp. DX3.1
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.37% |
18.0
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1867 |
Costelytra zealandica
Order: Coleoptera
|
Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland
|
0.05% |
17.9
|
Citrobacter freundii
Species-level Match
Host Order Match
|
RISB0127 |
Tribolium castaneum
Order: Coleoptera
|
may produce 4,8-dimethyldecanal (DMD) production that is strongly associated with attraction to females and host pheromone communication
|
0.13% |
17.9
|
Bacillus sp. NEB1478
Species-level Match
Host Order Match
|
RISB1645 |
Osphranteria coerulescens
Order: Coleoptera
|
The isolate has cellulolytic activity and can hydrolyze CMC, avicel, cellulose and sawdust with broad temperature and pH stability
|
0.21% |
17.8
|
Proteus vulgaris
Species-level Match
Host Order Match
|
RISB0001 |
Leptinotarsa decemlineata
Order: Coleoptera
|
produces toxic hydrogen cyanide (HCN) and a mandelonitrile-producing cyanoglucoside, amygdalin, which protect the insect from predation
|
0.07% |
17.8
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0497 |
Cryptolestes ferrugineus
Order: Coleoptera
|
bacteria can degrade malathion, pirimiphos-methyl, and deltamethrin and utilize these insecticides as the carbon source in vitro.
|
0.16% |
17.7
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB2042 |
Harpalus pensylvanicus
Order: Coleoptera
|
E. faecalis facilitate seed consumption by H. pensylvanicus, possibly by contributing digestive enzymes to their host
|
0.16% |
17.5
|
Staphylococcus gallinarum
Species-level Match
Host Order Match
|
RISB0946 |
Callosobruchus maculatus
Order: Coleoptera
|
The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine
|
0.01% |
17.4
|
Streptomyces sp. T12
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.68% |
17.3
|
Acinetobacter sp. KCTC 92772
Species-level Match
Host Order Match
|
RISB0706 |
Curculio chinensis
Order: Coleoptera
|
facilitate the degradation of tea saponin; genome contains 47 genes relating to triterpenoids degradation
|
0.08% |
17.2
|
Lactococcus lactis
Species-level Match
Host Order Match
|
RISB1430 |
Rhynchophorus ferrugineus
Order: Coleoptera
|
promote the development and body mass gain of RPW larvae by improving their nutrition metabolism
|
0.23% |
17.2
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB1295 |
Nicrophorus vespilloides
Order: Coleoptera
|
producing antibacterial compound Serrawettin W2, which has antibacterial and nematode-inhibiting effects
|
0.06% |
17.1
|
Paludibacter propionicigenes
Species-level Match
Host Order Match
|
RISB2055 |
Odontotaenius disjunctus
Order: Coleoptera
|
microbial fixation of nitrogen that is important for this beetle to subsist on woody biomass
|
0.01% |
16.9
|
Serratia marcescens
Species-level Match
Host Order Match
|
RISB0365 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.06% |
16.8
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1548 |
Costelytra zealandica
Order: Coleoptera
|
symbionts residing in the colleterial glands produce phenol 1 as the female sex pheromone
|
0.05% |
16.8
|
Morganella morganii
Species-level Match
Host Order Match
|
RISB1868 |
Costelytra zealandica
Order: Coleoptera
|
produces phenol as the sex pheromone of the host from tyrosine in the colleterial gland
|
0.05% |
16.8
|
Paenibacillus sp. FSL H8-0282
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.27% |
16.7
|
Streptomyces sp. NBC_00162
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.07% |
16.7
|
Stenotrophomonas maltophilia
Species-level Match
Host Order Match
|
RISB0139 |
Tenebrio molitor
Order: Coleoptera
|
correlated with polyvinyl chloride PVC degradation
|
0.63% |
16.6
|
Streptomyces sp. RTd22
Species-level Match
Host Order Match
|
RISB0777 |
Copris tripartitus
Order: Coleoptera
|
contribute brood ball hygiene by inhibiting fungal parasites in the environment
|
0.03% |
16.6
|
Enterococcus faecalis
Species-level Match
Host Order Match
|
RISB0374 |
Tribolium castaneum
Order: Coleoptera
|
modulates host phosphine resistance by interfering with the redox system
|
0.16% |
16.6
|
Pantoea sp. At-9b
Species-level Match
Host Order Match
|
RISB0814 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-14 oxidation pathway
|
0.10% |
16.5
|
Paenibacillus sp. HWE-109
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.05% |
16.5
|
Lactococcus sp. NH2-7C
Species-level Match
Host Order Match
|
RISB0811 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-13 oxidation pathway
|
0.02% |
16.4
|
Paenibacillus sp. PK3_47
Species-level Match
Host Order Match
|
RISB0813 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-9 oxidation pathway
|
0.04% |
16.4
|
Klebsiella pneumoniae
Species-level Match
Host Order Match
|
RISB1153 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.87% |
16.2
|
Paludibacter propionicigenes
Species-level Match
Host Order Match
|
RISB2056 |
Odontotaenius disjunctus
Order: Coleoptera
|
plays an important role in nitrogen fixation
|
0.01% |
15.9
|
Staphylococcus epidermidis
Species-level Match
Host Order Match
|
RISB1070 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.13% |
15.4
|
Lysinibacillus fusiformis
Species-level Match
Host Order Match
|
RISB1066 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.03% |
15.3
|
Burkholderia
Host Order Match
|
RISB1172 |
Lagria villosa
Order: Coleoptera
|
process a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore, which led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont
|
0.16% |
15.2
|
Vibrio
Host Order Match
|
RISB1810 |
Monochamus galloprovincialis
Order: Coleoptera
|
Have the ability for degradation of cellulose, proteins and starch
|
3.71% |
15.0
|
Pantoea agglomerans
Species-level Match
Host Order Match
|
RISB1858 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
None
|
0.02% |
15.0
|
Burkholderia
Host Order Match
|
RISB1729 |
Lagria hirta
Order: Coleoptera
|
the symbionts inhibit the growth of antagonistic fungi on the eggs of the insect host, indicating that the Lagria-associated Burkholderia have evolved from plant pathogenic ancestors into insect defensive mutualists
|
0.16% |
14.5
|
Burkholderia
Host Order Match
|
RISB1836 |
Dendroctonus valens
Order: Coleoptera
|
It can trongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas.
|
0.16% |
14.2
|
Wolbachia
Host Order Match
|
RISB1452 |
Octodonta nipae
Order: Coleoptera
|
Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues
|
0.67% |
13.8
|
Wolbachia
Host Order Match
|
RISB2107 |
Sitophilus zeamais
Order: Coleoptera
|
Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect
|
0.67% |
13.1
|
Bacteroides
Host Order Match
|
RISB1183 |
Oryzaephilus surinamensis
Order: Coleoptera
|
supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host
|
0.67% |
12.7
|
Candidatus Nardonella
Host Order Match
|
RISB2449 |
Euscepes postfasciatus
Order: Coleoptera
|
endosymbiont is involved in normal growth and development of the host weevil
|
1.03% |
12.6
|
Candidatus Nardonella
Host Order Match
|
RISB1931 |
Lissorhoptrus oryzophilus
Order: Coleoptera
|
might be not playing critical roles in the reproduction of L. oryzophilus
|
1.03% |
12.5
|
Wolbachia
Host Order Match
|
RISB1282 |
Ips sp.
Order: Coleoptera
|
inducing cytoplasmic incompatibility, resulting in reproductive distortions and hence
|
0.67% |
12.4
|
Corynebacterium
Host Order Match
|
RISB0363 |
Pagiophloeus tsushimanus
Order: Coleoptera
|
terpenoid-degrading: the highest degradation rates of D-camphor, linalool, and eucalyptol
|
0.12% |
11.9
|
Nostoc
Host Order Match
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.46% |
11.9
|
Candidatus Nardonella
Host Order Match
|
RISB1668 |
Multiple species
Order: Coleoptera
|
Possibly tyrosine precursor provisioning
|
1.03% |
11.8
|
Leuconostoc
Host Order Match
|
RISB0812 |
Hypothenemus hampei
Order: Coleoptera
|
might contribute to caffeine breakdown using the C-18 oxidation pathway
|
0.09% |
11.5
|
Escherichia coli
Species-level Match
|
RISB1339 |
Manduca sexta
Order: Lepidoptera
|
modulate immunity-related gene expression in the infected F0 larvae, and also in their offspring, triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation
|
1.75% |
11.1
|
Klebsiella pneumoniae
Species-level Match
|
RISB2185 |
Scirpophaga incertulas
Order: Lepidoptera
|
The ability of these arthropods to feed on wood, foliage and detritus is likely to involve catalysis by different types of cellulases/hemicellulases that are secreted by gut microbiota to digest the structural and recalcitrant lignocellulosic residues in their foods.
|
0.87% |
10.9
|
Mycobacterium
Host Order Match
|
RISB1156 |
Nicrophorus concolor
Order: Coleoptera
|
produces Antimicrobial compounds
|
0.02% |
10.7
|
Turicibacter
Host Order Match
|
RISB0451 |
Odontotaenius disjunctus
Order: Coleoptera
|
degrading ellulose and xylan
|
0.04% |
10.6
|
Aeromonas
Host Order Match
|
RISB1145 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.09% |
10.5
|
Rhodococcus
Host Order Match
|
RISB1157 |
Tenebrio molitor
Order: Coleoptera
|
degrading plastics
|
0.02% |
10.4
|
Comamonas
Host Order Match
|
RISB1061 |
Oryctes rhinoceros
Order: Coleoptera
|
gut microbe
|
0.06% |
10.3
|
Francisella tularensis
Species-level Match
|
RISB1907 |
Bombyx mori
Order: Lepidoptera
|
After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria.
|
0.08% |
10.1
|
Listeria monocytogenes
Species-level Match
|
RISB2308 |
Drosophila melanogaster
Order: Diptera
|
L. monocytogenes infection disrupts host energy metabolism by depleting energy stores (triglycerides and glycogen) and reducing metabolic pathway activity (beta-oxidation and glycolysis). The infection affects antioxidant defense by reducing uric acid levels and alters amino acid metabolism. These metabolic changes are accompanied by melanization, potentially linked to decreased tyrosine levels.
|
0.08% |
10.1
|
Dysgonomonas
Host Order Match
|
RISB1481 |
Brachinus elongatulus
Order: Coleoptera
|
None
|
0.04% |
10.0
|
Gilliamella apicola
Species-level Match
|
RISB0102 |
Apis mellifera
Order: Hymenoptera
|
Gilliamella apicola carries the gene for the desaturase FADS2, which is able to metabolize polyunsaturated fatty acids from pollen and synthesize endocannabinoid, a lipogenic neuroactive substance, thereby modulating reward learning and memory in honeybees.
|
0.02% |
10.0
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1122 |
Bombyx mori
Order: Lepidoptera
|
facilitate host resistance against organophosphate insecticides, provides essential amino acids that increase host fitness and allow the larvae to better tolerate the toxic effects of the insecticide.
|
0.63% |
9.6
|
Candidatus Nasuia deltocephalinicola
Species-level Match
|
RISB2283 |
Nephotettix cincticeps
Order: Hemiptera
|
Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect
|
0.06% |
9.4
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0394 |
Cacopsylla pyricola
Order: Hemiptera
|
Carsonella produces most essential amino acids (EAAs) for C. pyricola, Psyllophila complements the genes missing in Carsonella for the tryptophan pathway and synthesizes some vitamins and carotenoids
|
0.42% |
9.4
|
Clostridium sp. OS1-26
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.06% |
9.3
|
Clostridium sp. AWRP
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.05% |
9.3
|
Clostridium sp. MB40-C1
Species-level Match
|
RISB2301 |
Pyrrhocoris apterus
Order: Hemiptera
|
could play an important role for the insect by degrading complex dietary components, providing nutrient supplementation, or detoxifying noxious chemicals (e.g. cyclopropenoic fatty acids or gossypol) in the diet
|
0.04% |
9.3
|
Mammaliicoccus sciuri
Species-level Match
|
RISB0075 |
Bombyx mori
Order: Lepidoptera
|
could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls,completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana
|
0.12% |
9.1
|
Candidatus Schneideria nysicola
Species-level Match
|
RISB0872 |
Nysius sp.
Order: Hemiptera
|
synthesize four B vitamins(Pan, pantothenate;Fol, folate; Rib, riboflavin; Pyr, pyridoxine) and five Essential Amino Acids(Ile, isoleucine; Val, valine; Lys, lysine; Thr, threonine; Phe, phenylalanine)
|
0.06% |
9.1
|
Klebsiella michiganensis
Species-level Match
|
RISB1052 |
Bactrocera dorsalis
Order: Diptera
|
K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis
|
0.03% |
8.9
|
Blattabacterium cuenoti
Species-level Match
|
RISB0133 |
Panesthiinae
Order: Blattodea
|
enables hosts to subsist on a nutrient-poor diet; endosymbiont genome erosions are associated with repeated host transitions to an underground life
|
0.64% |
8.6
|
Candidatus Mikella endobia
Species-level Match
|
RISB1887 |
Paracoccus marginatus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.19% |
8.5
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1193 |
Bemisia tabaci
Order: Hemiptera
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, development and reproduction
|
0.12% |
8.5
|
Lactobacillus sp. IBH004
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.04% |
8.4
|
Lactobacillus sp. PV034
Species-level Match
|
RISB0292 |
Lymantria dispar asiatica
Order: Lepidoptera
|
Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h.
|
0.03% |
8.4
|
Candidatus Gullanella endobia
Species-level Match
|
RISB1885 |
Ferrisia virgata
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.01% |
8.4
|
Spiroplasma sp. BIUS-1
Species-level Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.03% |
8.4
|
Spiroplasma sp. TIUS-1
Species-level Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.02% |
8.3
|
Stenotrophomonas maltophilia
Species-level Match
|
RISB1227 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.63% |
8.3
|
Spiroplasma sp. SV19
Species-level Match
|
RISB1353 |
Cephus cinctus
Order: Hymenoptera
|
The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase.
|
0.01% |
8.3
|
Wigglesworthia glossinidia
Species-level Match
|
RISB0369 |
Glossina morsitans
Order: Diptera
|
symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity
|
0.16% |
8.3
|
Candidatus Profftella armatura (Diaphorina cf. continua)
Species-level Match
|
RISB2147 |
Diaphorina citri
Order: Hemiptera
|
a defensive symbiont presumably of an obligate nature, which encoded horizontally acquired genes for synthesizing a novel polyketide toxin, diaphorin
|
0.04% |
8.0
|
Citrobacter freundii
Species-level Match
|
RISB1221 |
Delia antiqua
Order: Diptera
|
six bacteria protect larvae from infection with the entomopathogen Beauveria bassiana through symbiotic bacterium-derived organic acids
|
0.13% |
7.8
|
Candidatus Profftella armatura (Diaphorina cf. continua)
Species-level Match
|
RISB2005 |
Diaphorina citri
Order: Hemiptera
|
produce proteins involved in polyketide biosynthesis,which were up-regulated in CLas(+) insects (associated with citrus greening disease)
|
0.04% |
7.8
|
Candidatus Tachikawaea gelatinosa
Species-level Match
|
RISB2112 |
Urostylis westwoodii
Order: Hemiptera
|
the symbiont localizes to a specialized midgut region and supplies essential amino acids deficient in the host's diet
|
0.33% |
7.7
|
Escherichia coli
Species-level Match
|
RISB2120 |
Galleria mellonella
Order: Lepidoptera
|
mediate trans-generational immune priming
|
1.75% |
7.6
|
Candidatus Nasuia deltocephalinicola
Species-level Match
|
RISB2282 |
Nephotettix cincticeps
Order: Hemiptera
|
With the antibiotic, nymphal growth was remarkably retarded, and a number of nymphs either died or failed to attain adulthood
|
0.06% |
7.6
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1693 |
Plutella xylostella
Order: Lepidoptera
|
play an important role in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids.
|
0.04% |
7.5
|
Candidatus Profftella armatura (Diaphorina cf. continua)
Species-level Match
|
RISB2146 |
Diaphorina citri
Order: Hemiptera
|
encoded horizontally acquired genes for synthesizing a novel polyketide toxin, providing defense against natural enemies
|
0.04% |
7.4
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB2289 |
Bemisia tabaci
Order: Hemiptera
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids,
|
0.12% |
7.3
|
Candidatus Nasuia deltocephalinicola
Species-level Match
|
RISB0262 |
Maiestas dorsalis
Order: Hemiptera
|
are responsible for synthesizing two essential amino acids (histidine and methionine) and riboflavin (vitamin B2)
|
0.06% |
7.3
|
Wigglesworthia glossinidia
Species-level Match
|
RISB1786 |
Glossina morsitans
Order: Diptera
|
Synthesis of a large number of B vitamins, to supplement the host nutritional deficiencies of the diet
|
0.16% |
7.2
|
Candidatus Portiera aleyrodidarum
Species-level Match
|
RISB1973 |
Bemisia tabaci
Order: Hemiptera
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources
|
0.12% |
7.1
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2368 |
Megacopta punctatissima
Order: Hemiptera
|
Microbe compensates for nutritional deficiency of host diet by supplying essential amino acids
|
0.21% |
7.1
|
Salmonella enterica
Species-level Match
|
RISB0413 |
Melanaphis sacchari
Order: Hemiptera
|
None
|
2.04% |
7.0
|
Snodgrassella alvi
Species-level Match
|
RISB1423 |
Bombus spp.
Order: Hymenoptera
|
The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate
|
0.01% |
6.9
|
Leclercia adecarboxylata
Species-level Match
|
RISB1757 |
Spodoptera frugiperda
Order: Lepidoptera
|
degradation of lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, lufenuron and spinosyn
|
0.02% |
6.8
|
Blattabacterium sp. DPU
Species-level Match
|
RISB1534 |
Periplaneta fuliginosa
Order: Blattodea
|
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
|
0.04% |
6.7
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1794 |
Cardiocondyla obscurior
Order: Hymenoptera
|
Contributes to cuticle formation and is responsible for host invasive success
|
0.13% |
6.7
|
Blattabacterium sp. (Blaberus giganteus)
Species-level Match
|
RISB1534 |
Periplaneta fuliginosa
Order: Blattodea
|
involved in uric acid degradation, nitrogen assimilation and nutrient provisioning
|
0.02% |
6.7
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1692 |
Plutella xylostella
Order: Lepidoptera
|
participate in the synthesis of host lacking amino acids histidine and threonine
|
0.04% |
6.6
|
Frischella perrara
Species-level Match
|
RISB2028 |
Diceroprocta semicincta
Order: Hemiptera
|
causes the formation of a scab-like structure on the gut epithelium of its host
|
0.02% |
6.6
|
Xenorhabdus bovienii
Species-level Match
|
RISB2270 |
Acyrthosiphon pisum
Order: Hemiptera
|
have the gene PIN1 encoding the protease inhibitor protein against aphids
|
0.01% |
6.5
|
Wigglesworthia glossinidia
Species-level Match
|
RISB2577 |
Glossina brevipalpis
Order: Diptera
|
provide its tsetse host with metabolites such as vitamins
|
0.16% |
6.3
|
Delftia lacustris
Species-level Match
|
RISB1754 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.10% |
6.2
|
Candidatus Riesia pediculicola
Species-level Match
|
RISB2452 |
Pediculus humanus humanus
Order: Phthiraptera
|
supplement body lice nutritionally deficient blood diet
|
0.10% |
6.2
|
Candidatus Westeberhardia cardiocondylae
Species-level Match
|
RISB1795 |
Cardiocondyla obscurior
Order: Hymenoptera
|
a contribution of Westeberhardia to cuticle formation
|
0.13% |
6.2
|
Leclercia adecarboxylata
Species-level Match
|
RISB1758 |
Spodoptera frugiperda
Order: Lepidoptera
|
may influence the metabolization of pesticides in insects
|
0.02% |
6.2
|
Proteus vulgaris
Species-level Match
|
RISB2460 |
Bombyx mori
Order: Lepidoptera
|
degradation of cellulose, xylan, pectin and starch
|
0.07% |
6.1
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0674 |
Drosophila melanogaster
Order: Diptera
|
could effectively inhibit fungal spore germinations
|
0.04% |
6.1
|
Lysinibacillus fusiformis
Species-level Match
|
RISB1417 |
Psammotermes hypostoma
Order: Blattodea
|
isolates showed significant cellulolytic activity
|
0.03% |
6.0
|
Candidatus Ishikawella capsulata
Species-level Match
|
RISB2543 |
Megacopta punctatissima
Order: Hemiptera
|
Enhance pest status of the insect host
|
0.21% |
6.0
|
Providencia rettgeri
Species-level Match
|
RISB1001 |
Anastrepha obliqua
Order: Diptera
|
improve the sexual competitiveness of males
|
0.09% |
6.0
|
Agrobacterium tumefaciens
Species-level Match
|
RISB0650 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.83% |
5.8
|
Carnobacterium maltaromaticum
Species-level Match
|
RISB1691 |
Plutella xylostella
Order: Lepidoptera
|
activity of cellulose and hemicellulose
|
0.04% |
5.8
|
Providencia alcalifaciens
Species-level Match
|
RISB1168 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.09% |
5.7
|
Chryseobacterium sp. StRB126
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.05% |
5.6
|
Chryseobacterium sp. POL2
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.04% |
5.6
|
Chryseobacterium sp. Chry.R1
Species-level Match
|
RISB2092 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.03% |
5.6
|
Enterobacter mori
Species-level Match
|
RISB1163 |
Bactrocera dorsalis
Order: Diptera
|
Promote the growth of larvae
|
0.01% |
5.6
|
Candidatus Carsonella ruddii
Species-level Match
|
RISB0748 |
Diaphorina citri
Order: Hemiptera
|
None
|
0.42% |
5.4
|
Candidatus Annandia pinicola
Species-level Match
|
RISB1661 |
Adelgidae
Order: Hemiptera
|
None
|
0.42% |
5.4
|
Arsenophonus nasoniae
Species-level Match
|
RISB0428 |
Nasonia vitripennis
Order: Hymenoptera
|
male killing
|
0.03% |
5.3
|
Candidatus Erwinia haradaeae
Species-level Match
|
RISB1632 |
Lachninae
Order: Hemiptera
|
None
|
0.24% |
5.2
|
Candidatus Legionella polyplacis
Species-level Match
|
RISB1687 |
Polyplax serrata
Order: Phthiraptera
|
None
|
0.14% |
5.1
|
Enterobacter hormaechei
Species-level Match
|
RISB1331 |
Zeugodacus cucurbitae
Order: Diptera
|
None
|
0.11% |
5.1
|
Delftia lacustris
Species-level Match
|
RISB0657 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.10% |
5.1
|
Providencia rettgeri
Species-level Match
|
RISB1352 |
Nasonia vitripennis
Order: Hymenoptera
|
None
|
0.09% |
5.1
|
Candidatus Annandia adelgestsuga
Species-level Match
|
RISB2207 |
Adelges tsugae
Order: Hemiptera
|
None
|
0.09% |
5.1
|
Flavobacterium johnsoniae
Species-level Match
|
RISB0659 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.08% |
5.1
|
Candidatus Palibaumannia cicadellinicola
Species-level Match
|
RISB1594 |
Graphocephala coccinea
Order: Hemiptera
|
None
|
0.07% |
5.1
|
Candidatus Karelsulcia muelleri
Species-level Match
|
RISB1591 |
Philaenus spumarius
Order: Hemiptera
|
None
|
0.05% |
5.1
|
Lactiplantibacillus plantarum
Species-level Match
|
RISB0608 |
Drosophila melanogaster
Order: Diptera
|
None
|
0.04% |
5.0
|
Rickettsia conorii
Species-level Match
|
RISB1901 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.04% |
5.0
|
Arsenophonus nasoniae
Species-level Match
|
RISB0366 |
Pachycrepoideus vindemmiae
Order: Hymenoptera
|
None
|
0.03% |
5.0
|
Gilliamella apicola
Species-level Match
|
RISB1945 |
Apis cerana
Order: Hymenoptera
|
None
|
0.02% |
5.0
|
Rickettsia typhi
Species-level Match
|
RISB1906 |
Bemisia tabaci
Order: Hemiptera
|
None
|
0.02% |
5.0
|
Snodgrassella alvi
Species-level Match
|
RISB1947 |
Apis cerana
Order: Hymenoptera
|
None
|
0.01% |
5.0
|
Treponema
|
RISB2377 |
termite
Order: Blattodea
|
when grown together, two termite-gut Treponema species influence each other's gene expression in a far more comprehensive and nuanced manner than might have been predicted based on the results of previous studies on the respective pure cultures
|
0.10% |
5.0
|
Apibacter
|
RISB0603 |
Apis cerana
Order: Hymenoptera
|
The acquisition of genes for the degradation of the toxic monosaccharides potentiates Apibacter with the ability to utilize the pollen hydrolysis products, at the same time enabling monosaccharide detoxification for the host
|
0.03% |
4.5
|
Candidatus Blochmanniella
|
RISB2542 |
Camponotus
Order: Hymenoptera
|
Blochmannia provide essential amino acids to its host,Camponotus floridanus, and that it may also play a role in nitrogen recycling via its functional urease
|
1.01% |
4.2
|
Candidatus Blochmanniella
|
RISB1827 |
Camponotus floridanus
Order: Hymenoptera
|
a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission
|
1.01% |
4.1
|
Weissella
|
RISB1982 |
Blattella germanica
Order: Blattodea
|
gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community
|
0.02% |
3.8
|
Xanthomonas
|
RISB0498 |
Xylocopa appendiculata
Order: Hymenoptera
|
Xanthomonas strain from Japanese carpenter bee is effective PU-degradable bacterium and is able to use polyacryl-based PU as a nutritional source, as well as other types of PS-PU and PE-PU
|
0.03% |
3.8
|
Photorhabdus
|
RISB2532 |
Manduca sexta
Order: Lepidoptera
|
produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the insect host Manduca sexta.
|
0.02% |
3.8
|
Candidatus Blochmanniella
|
RISB2448 |
Camponotus floridanus
Order: Hymenoptera
|
nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling
|
1.01% |
3.8
|
Pectobacterium
|
RISB1889 |
Pseudococcus longispinus
Order: Hemiptera
|
a nested symbiotic arrangement, where one bacterium lives inside another bacterium,occurred in building the mosaic metabolic pathways seen in mitochondria and plastids
|
0.04% |
3.4
|
Amycolatopsis
|
RISB0483 |
Trachymyrmex smithi
Order: Hymenoptera
|
inhibited the growth of Pseudonocardia symbionts under laboratory conditions. The novel analog nocamycin V from the strain was identified as the antibacterial compound
|
0.03% |
3.4
|
Rhodococcus
|
RISB0775 |
Delia antiqua
Order: Diptera
|
showed significant contact inhibition activity against fungal entomopathogen Fusarium moniliforme, Botryosphaeria dothidea and both Fusarium oxysporum respectively
|
0.02% |
3.3
|
Streptococcus
|
RISB2625 |
Galleria mellonella
Order: Lepidoptera
|
suppress bacteria ingested with food by producing bacteriocin and by releasing a lysozyme like enzyme
|
1.14% |
3.2
|
Amycolatopsis
|
RISB0199 |
Trachymyrmex
Order: Hymenoptera
|
produce antibiotic EC0-0501 that has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche
|
0.03% |
3.1
|
Bacteroides
|
RISB0256 |
Leptocybe invasa
Order: Hymenoptera
|
Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa
|
0.67% |
3.0
|
Bacteroides
|
RISB0090 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.67% |
2.8
|
Photorhabdus
|
RISB2573 |
Manduca sexta
Order: Lepidoptera
|
the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system
|
0.02% |
2.8
|
Streptococcus
|
RISB2624 |
Reticulitermes flavipes
Order: Blattodea
|
can be broken down into substances such as carbon dioxide, ammonia and acetic acid
|
1.14% |
2.8
|
Weissella
|
RISB0641 |
Formica
Order: Hymenoptera
|
exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew
|
0.02% |
2.8
|
Bartonella
|
RISB1673 |
Apis mellifera
Order: Hymenoptera
|
a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream
|
0.09% |
2.7
|
Shewanella
|
RISB1924 |
Anopheles gambiae
Order: Diptera
|
may be related with mediating adaptation to different ecological niches or in shaping specific adult behaviors including mating
|
0.08% |
2.6
|
Comamonas
|
RISB2021 |
Bactrocera dorsalis
Order: Diptera
|
This group in the immature stages may be helping the insects to cope with oxidative stress by supplementing available oxygen.
|
0.06% |
2.6
|
Yersinia
|
RISB0492 |
Cimex hemipterus
Order: Hemiptera
|
the disruption of the abundant Yersinia possibly could be related to the enhanced susceptibility towards the insecticides
|
0.10% |
2.5
|
Streptococcus
|
RISB2604 |
Homona magnanima
Order: Lepidoptera
|
influence the growth of Bacillus thuringiensis in the larvae
|
1.14% |
2.3
|
Liberibacter
|
RISB2310 |
Bactericerca cockerelli
Order: Hemiptera
|
manipulate plant signaling and defensive responses, suppress accumulation of defense transcripts like JA and SA
|
0.02% |
2.3
|
Blautia
|
RISB0091 |
Hyphantria cunea
Order: Lepidoptera
|
enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
|
0.06% |
2.2
|
Nitrosospira
|
RISB0869 |
Sirex noctilio
Order: Hymenoptera
|
might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut
|
0.01% |
2.1
|
Apilactobacillus
|
RISB0475 |
Apis mellifera
Order: Hymenoptera
|
A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees
|
0.01% |
2.1
|
Xanthomonas
|
RISB0217 |
Xylocopa appendiculata
Order: Hymenoptera
|
strains biodegraded polyethylene terephthalate PET powder, broke it into its degradation products
|
0.03% |
2.0
|
Rhodococcus
|
RISB0430 |
Rhodnius prolixus
Order: Hemiptera
|
Rhodnius prolixus harbouring R. rhodnii developed faster, had higher survival, and laid more eggs
|
0.02% |
2.0
|
Corynebacterium
|
RISB0531 |
Helicoverpa armigera
Order: Lepidoptera
|
Corynebacterium sp. 2-TD, mediates the toxicity of the 2-tridecanone to H. armigera
|
0.12% |
1.8
|
Lachnospira
|
RISB2110 |
Blattella germanica
Order: Blattodea
|
Hydrolyze polysaccharide; assist digestion; synthesize acetate, propionate, and butyrate
|
0.01% |
1.8
|
Liberibacter
|
RISB2524 |
Bactericera cockerelli
Order: Hemiptera
|
Reduced expression of plant defensive gene in tomato probably for psyllid success
|
0.02% |
1.6
|
Paraclostridium
|
RISB0028 |
Sesamia inferens
Order: Lepidoptera
|
degrade Chlorpyrifos and Chlorantraniliprole in vitro
|
0.48% |
1.5
|
Dysgonomonas
|
RISB1235 |
Hermetia illucens
Order: Diptera
|
provides the tools for degrading of a broad range of substrates
|
0.04% |
1.3
|
Photorhabdus
|
RISB0532 |
Drosophila melanogaster
Order: Diptera
|
produces toxin complex (Tc) toxins as major virulence factors
|
0.02% |
1.2
|
Dickeya
|
RISB1086 |
Rhodnius prolixus
Order: Hemiptera
|
supply enzymatic biosynthesis of B-complex vitamins
|
0.07% |
1.1
|
Pectobacterium
|
RISB0798 |
Pseudoregma bambucicola
Order: Hemiptera
|
may help P. bambucicola feed on the stalks of bamboo
|
0.04% |
1.1
|
Liberibacter
|
RISB2333 |
Cacopsylla pyri
Order: Hemiptera
|
behaves as an endophyte rather than a pathogen
|
0.02% |
0.9
|
Aeromonas
|
RISB2456 |
Bombyx mori
Order: Lepidoptera
|
able to utilize the CMcellulose and xylan
|
0.09% |
0.9
|
Corynebacterium
|
RISB2360 |
Bombyx mori
Order: Lepidoptera
|
producing lipase in a gut environment
|
0.12% |
0.9
|
Peribacillus
|
RISB1877 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.53% |
0.8
|
Cedecea
|
RISB1570 |
Bactrocera tau
Order: Diptera
|
could attract male and female B. tau
|
0.02% |
0.7
|
Priestia
|
RISB0839 |
Helicoverpa armigera
Order: Lepidoptera
|
producing amylase
|
0.39% |
0.7
|
Aeromonas
|
RISB2086 |
Aedes aegypti
Order: Diptera
|
axenic larvae cannot develop
|
0.09% |
0.7
|
Comamonas
|
RISB1875 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.06% |
0.3
|
Achromobacter
|
RISB1869 |
Aedes aegypti
Order: Diptera
|
gut microbiome
|
0.03% |
0.3
|
Vagococcus
|
RISB0042 |
Aldrichina grahami
Order: Diptera
|
None
|
0.28% |
0.3
|
Helicobacter
|
RISB0662 |
Melanaphis bambusae
Order: Hemiptera
|
None
|
0.19% |
0.2
|
Metabacillus
|
RISB0902 |
Myzus persicae
Order: Hemiptera
|
None
|
0.12% |
0.1
|
Myroides
|
RISB0626 |
Musca altica
Order: Diptera
|
None
|
0.12% |
0.1
|
Treponema
|
RISB0169 |
Reticulitermes flaviceps
Order: Blattodea
|
None
|
0.10% |
0.1
|
Yersinia
|
RISB0407 |
Anaphes nitens
Order: Hymenoptera
|
None
|
0.10% |
0.1
|
Candidatus Phytoplasma
|
RISB1620 |
Cacopsylla pyricola
Order: Hemiptera
|
None
|
0.10% |
0.1
|
Candidatus Profftia
|
RISB1664 |
Adelgidae
Order: Hemiptera
|
None
|
0.08% |
0.1
|
Neisseria
|
RISB0512 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.06% |
0.1
|
Geobacillus
|
RISB1251 |
Potamobates horvathi
Order: Hemiptera
|
None
|
0.06% |
0.1
|
Candidatus Arthromitus
|
RISB2613 |
Multiple species
Order: None
|
None
|
0.06% |
0.1
|
Pectobacterium
|
RISB1772 |
Muscidae
Order: Diptera
|
None
|
0.04% |
0.0
|
Apibacter
|
RISB0604 |
Apis cerana
Order: Hymenoptera
|
None
|
0.03% |
0.0
|
Achromobacter
|
RISB0383 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.03% |
0.0
|
Weissella
|
RISB1566 |
Liometopum apiculatum
Order: Hymenoptera
|
None
|
0.02% |
0.0
|
Cedecea
|
RISB0504 |
Plutella xylostella
Order: Lepidoptera
|
None
|
0.02% |
0.0
|
Cupriavidus
|
RISB0694 |
Alydus tomentosus
Order: Hemiptera
|
None
|
0.02% |
0.0
|
Selenomonas
|
RISB1305 |
Aphis gossypii
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Weeksella
|
RISB1265 |
Rheumatobates bergrothi
Order: Hemiptera
|
None
|
0.01% |
0.0
|
Sediminibacterium
|
RISB0244 |
Spodoptera frugiperda
Order: Lepidoptera
|
None
|
0.01% |
0.0
|
Download Files
Taxonomic Analysis Files
Assembly & Gene Prediction
Raw Sequencing Files
Direct download from NCBI SRARaw sequencing files are hosted on NCBI SRA. Click the download button to start downloading directly from NCBI servers.