Riptortus pedestris
Riptortus pedestris is a species of the family Alydidae.
Host Genome
Chromosome| Genome ID | Level | BUSCO Assessment |
|---|---|---|
| GCA_019009955.1 | Chromosome |
C:83.7%[S:82.2%,D:1.5%],F:1.5%,M:14.8%,n:1367
|
Download Genome Files
Related Symbionts
29 recordsSymbiont records associated with Riptortus pedestris
| Classification | Function | Function Tags | Reference | |
|---|---|---|---|---|
|
Serratia marcescens
Pseudomonadota |
Bacteria
|
Serratia marcescens mediates the detoxification of organophosphate pesticide (dimethoate) in Riptortus pedestris by possessing an organophosphorus-de… |
pesticide metabolization
|
|
|
Burkholderia insecticola
Pseudomonadota |
Bacteria
|
Burkholderia insecticola induces the development of the midgut crypts by regulating enterocyte cell cycles, allowing the symbiont to stably and abund… |
developmental modulation
|
|
|
Burkholderia insecticola strain RPE75
Pseudomonadota |
Bacteria
|
Burkholderia insecticola strain RPE75 provides the host with essential, limited nutrients, contributing to rapid growth and enhanced reproduction, by… |
amino acid provision
nitrogen fixation
fertility
growth regulation
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia gut symbiont enhances the ovarian development and egg production (fecundity) of Riptortus pedestris by modulating Kr-h1 gene expression … |
fertility
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
The lipopolysaccharide core oligosaccharide of Burkholderia is critical in maintaining a proper gut symbiosis, including symbiont titer, host growth,… |
growth regulation
|
|
|
Caballeronia insecticola
Pseudomonadota |
Bacteria
|
Caballeronia insecticola (gut symbiont) results in an increase in the body size and weight of male adults and increased dispersal capacity (especiall… |
growth regulation
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia (in Riptortus pedestris) infected insects showed up-regulation and down-regulation of specific genes that may be involved in the regulat… |
other
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia gut symbiont stimulates the biosynthesis of the heteroptera-specific JHSB3 in the host, leading to a larger number of eggs produced and … |
fertility
|
|
|
Burkholderia symbiont strain SFA1
Pseudomonadota |
Bacteria
|
Burkholderia symbiont strain SFA1 helps Riptortus pedestris to degrade insecticide through a horizontally acquired insecticide-degrading enzyme into … |
pesticide metabolization
|
|
|
Burkholderia sp.
Pseudomonadota |
Bacteria
|
Burkholderia sp. acquired from pesticide-sprayed soil makes susceptible insects resistant via pesticide-degrading activity, an association that requi… |
pesticide metabolization
|
|
|
Caballeronia jiangsuensis
Pseudomonadota |
Bacteria
|
Caballeronia jiangsuensis significantly enhances the development, body size, and reproductive potentials (fertility) of Riptortus pedestris under lab… |
fertility
growth regulation
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia (in Riptortus pedestris) induces specific antimicrobial activity in region MB4 of the midgut, suggesting symbiont-mediated induction of … |
antimicrobial activity
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia is an ingested soil bacterium that primes the host's systemic immunity, preventing subsequent infection by lethal pathogens in Riptortus… |
immune priming
|
|
|
Burkholderia insecticola
Pseudomonadota |
Bacteria
|
Burkholderia insecticola stimulates the sprouting of tracheal branches toward the symbiont-infected M4 crypts (developmental modulation) in Riptortus… |
developmental modulation
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia enrichment in the host gut plays a significant role in enhancing the reproduction (fertility) of the plant-sucking insect, Riptortus ped… |
fertility
|
|
|
Burkholderia symbiont RPE75 purL mutant
Pseudomonadota |
Bacteria
|
Burkholderia symbiont RPE75 purL mutant resulted in significantly smaller host body size, likely due to a lower infection density in the host midgut. |
growth regulation
|
|
|
Burkholderia symbiont RPE75 purM mutant
Pseudomonadota |
Bacteria
|
Burkholderia symbiont RPE75 purM mutant resulted in significantly smaller host body size, likely due to a lower infection density in the host midgut. |
growth regulation
|
|
|
Burkholderia sp.
Pseudomonadota |
Bacteria
|
Burkholderia sp. did not affect the host insect's development, but the first oviposition time was approximately 60% compared with a control group. |
fertility
|
|
|
Burkholderia insecticola
Pseudomonadota |
Bacteria
|
Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. |
other
|
|
|
Lactococcus lactis B1None3
Bacillota |
Bacteria
|
Lactococcus lactis B1None3 (a gut strain) can be utilized as a probiotic to increase the survival rate of the host, Riptortus pedestris. |
probiotic
|
|
|
Lactococcus lactis B1None3
Bacillota |
Bacteria
|
Lactococcus lactis B1None3 (a gut strain) can be utilized as a probiotic to increase the survival rate of the host, Riptortus pedestris. |
probiotic
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia provides essential amino acids and/or vitamins, which are often deficient in the plant sap diet of the heteropteran hosts. |
amino acid provision
vitamin supplementation
|
|
|
Enterococcus faecalis
Bacillota |
Bacteria
|
Enterococcus faecalis (a gut strain) can be utilized as a probiotic to increase the survival rate of the host, Riptortus pedestris. |
probiotic
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia recycles host metabolic wastes into essential amino acids and B vitamins within the M4 crypts of the host insect. |
amino acid provision
B vitamin supplementation
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia gut symbionts positively affect the Riptortus systemic immunity through stronger humoral immunity. |
immune priming
|
|
|
Burkholderia sp.
Pseudomonadota |
Bacteria
|
Burkholderia sp. mediates fenitrothion (insecticide) resistance to the insect host. |
pesticide metabolization
|
|
|
Burkholderia
Pseudomonadota |
Bacteria
|
Burkholderia degrades the insecticide fenitrothion (MEP). |
pesticide metabolization
|
|
|
Burkholderia sp.
Pseudomonadota |
Bacteria
|
- |
||
|
Bacteria
|
- |
Metagenome Information
0 recordsMetagenome sequencing data associated with Riptortus pedestris
| Run | Platform | Location | Date | BioProject |
|---|---|---|---|---|
No metagenomes foundNo metagenome records associated with this host species. |
||||
Amplicon Information
1 recordsAmplicon sequencing data associated with Riptortus pedestris
| Run | Classification | Platform | Location | Environment |
|---|---|---|---|---|
|
DRR358030
AMPLICON |
16S
|
-
|
Japan
missing |
woodland
woodland |
Related Articles
23 recordsResearch articles related to Riptortus pedestris
| Title | Authors | Journal | Year | DOI |
|---|---|---|---|---|
|
Shan, Hong-Wei; Xia, Xie-Jiang; Feng, Yi-Lu ... Li, Jun-Min; Chen, Jian-Ping
|
npj Biofilms and Microbiomes
|
2024
|
10.1038/s41522-024-00539-z | |
|
Jang, S; Ishigami, K; Mergaert, P; Kikuchi, Y
|
Proceedings of the National Academy of Sciences
|
2024
|
10.1073/pnas.2315540121 | |
|
Gook, DH; Jung, M; Kim, S; Lee, DH
|
SCIENTIFIC REPORTS
|
2023
|
10.1038/s41598-023-42419-0 | |
|
Choi, O; Lee, YY; Kang, BYS ... Bae, SM; Kim, J
|
PLOS ONE
|
2023
|
10.1371/journal.pone.0281121 | |
|
Jung, M; Lee, DH
|
JOURNAL OF ASIA-PACIFIC ENTOMOLOGY
|
2023
|
10.1016/j.aspen.2023.102085 | |
|
Xia, XJ; Wu, W; Chen, JP; Shan, HW
|
JOURNAL OF APPLIED ENTOMOLOGY
|
2023
|
10.1111/jen.13122 | |
|
Jang, S; Matsuura, Y; Ishigami, K; Mergaert, P; Kikuchi, Y
|
Frontiers in Physiology
|
2023
|
10.3389/fphys.2022.1071987 | |
|
Lee, J; Lee, DW
|
ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY
|
2023
|
10.1002/arch.21987 | |
|
Sato, Y; Jang, S; Takeshita, K ... Hori, T; Kikuchi, Y
|
NATURE COMMUNICATIONS
|
2021
|
10.1038/s41467-021-26649-2 | |
|
Jang, S; Mergaert, P; Ohbayashi, T ... Itoh, H; Kikuchi, Y
|
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
|
2021
|
10.1073/pnas.2020922118 | |
|
Kikuchi, Y; Ohbayashi, T; Jang, S; Mergaert, P
|
The ISME Journal
|
2020
|
10.1038/s41396-020-0633-3 | |
|
Itoh, H; Jang, S; Takeshita, K ... Mitani, Y; Kikuchi, Y
|
Proceedings of the National Academy of Sciences of the United States of America
|
2019
|
10.1073/pnas.1912397116 | |
|
Kim, S; Lee, DH
|
ENTOMOLOGICAL RESEARCH
|
2019
|
10.1111/1748-5967.12364 | |
|
Lee, J; Kim, CH; Jang, HA ... Yoo, JW; Lee, BL
|
DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY
|
2019
|
10.1016/j.dci.2019.103399 | |
|
Ohbayashi, T; Futahashi, R; Terashima, M ... Mergaert, P; Kikuchi, Y
|
The ISME Journal
|
2019
|
10.1038/s41396-019-0361-8 | |
|
Itoh, H; Hori, T; Sato, Y ... Hayatsu, M; Kikuchi, Y
|
ISME JOURNAL
|
2018
|
10.1038/s41396-017-0021-9 | |
|
Kim, JK; Jang, HA; Kim, MS ... Molinaro, A; Lee, BL
|
JOURNAL OF BIOLOGICAL CHEMISTRY
|
2017
|
10.1074/jbc.M117.813832 | |
|
Kim, JK; Lee, JB; Huh, YR ... Yoo, JW; Lee, BL
|
DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY
|
2015
|
10.1016/j.dci.2015.07.006 | |
|
Kil, YJ; Seo, MJ; Kang, DK ... Yasunaga-Aoki, C; Yu, YM
|
JOURNAL OF THE FACULTY OF AGRICULTURE KYUSHU UNIVERSITY
|
2014
|
10.5109/1434382 | |
|
Futahashi, R; Tanaka, K; Tanahashi, M ... Lee, BL; Fukatsu, T
|
PLOS ONE
|
2013
|
10.1371/journal.pone.0064557 | |
|
Kim, JK; Kim, NH; Jang, HA ... Fukatsu, T; Lee, BL
|
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
|
2013
|
10.1128/AEM.02152-13 | |
|
Kim, JK; Jang, HA; Won, YJ ... Fukatsu, T; Lee, BL
|
The ISME Journal
|
2013
|
10.1038/ismej.2013.168 | |
|
Kikuchi, Y; Hosokawa, T; Fukatsu, T
|
The ISME Journal
|
2010
|
10.1038/ismej.2010.150 |