Bemisia tabaci
Image source: Oscar Angel Sánchez Flores@BY-NC

Bemisia tabaci is one of several species of whitefly that are currently important agricultural pests.The silverleaf whitefly thrives worldwide in tropical, subtropical, and less predominately in temperate habitats. Cold temperatures kill both the adults and the nymphs of the species. The silverleaf whitefly can be confused with other insects such as the common fruitfly, but with close inspection, the whitefly is slightly smaller and has a distinct wing color that helps to differentiate it from other insects.

Host Genome

Scaffold
Genome ID Level BUSCO Assessment
GCA_903994105.1 Scaffold
C:87.6%[S:84.9%,D:2.7%],F:2.6%,M:9.8%,n:1367

Related Symbionts

53 records

Symbiont records associated with Bemisia tabaci

Classification Function Function Tags Reference
Bacteria

Portiera has bacterial homologues of fungal carotenoid biosynthesis genes, supporting the hypothesis that endosymbiotic bacteria can provide a source…

chemical biosynthesis
Bacteria

Candidatus Cardinium reduces the competitiveness of the host Bemisia tabaci by decreasing its detoxification metabolism ability, specifically the exp…

plant defense modulation
Rickettsia

Pseudomonadota

Bacteria

Rickettsia infection improved its host's fitness by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), the entomopathoge…

pesticide metabolization pathogen resistance
Hamiltonella

Pseudomonadota

Bacteria

Hamiltonella (in Bemisia tabaci MED) conferred significant benefits, including increased egg production, higher nymphal survival, faster development …

fertility growth regulation
Bacteria

The genome of Candidatus Hamiltonella defensa revealed that this secondary symbiont can not only provide vitamins and cofactors but also complete the…

amino acid provision vitamin supplementation
Bacteria

Portiera aleyrodidarum synthesizes essential amino acids (e.g., tryptophan, leucine, and L-Isoleucine), providing vital nutritional support for Bemis…

amino acid provision
Rickettsia

Pseudomonadota

Bacteria

Rickettsia is transmitted into and remains alive within cotton plants via Bemisia tabaci feeding, where its induced defense responses can increase th…

plant defense modulation
Bacteria

Candidatus Portiera aleyrodidarum encodes the capability to synthesize, or participate in the synthesis of, several amino acids and carotenoids, acti…

amino acid provision vitamin supplementation
Bacteria

Candidatus Portiera aleyrodidarum determines vitellogenin (Vg) localization in the bacteriocytes of Bemisia tabaci whiteflies, facilitating the host-…

other
Rickettsia

Pseudomonadota

Bacteria

Rickettsia plays an essential role in energy metabolism and nutrient synthesis in Bemisia tabaci MEAM1, but its survival depends on metabolites obtai…

amino acid provision
Arsenophonus

Pseudomonadota

Bacteria

Arsenophonus produces GroEL proteins in B. tabaci (Asia II species) that interact with the coat protein of begomovirus and therefore facilitate virus…

virus interaction
Arsenophonus

Pseudomonadota

Bacteria

Arsenophonus plays a key role in the retention and transmission of Cotton Leaf Curl Virus (CLCuV) in the Asia II-1 genetic group of Bemisia tabaci.

virus interaction
Rickettsia

Pseudomonadota

Bacteria

Rickettsia infection in Bemisia tabaci MED stimulates juvenile hormone synthesis, resulting in increased fecundity and a female-biased sex ratio.

fertility reproductive manipulation
Rickettsia

Pseudomonadota

Bacteria

Both Bemisia tabaci B and MED show a strong link of the facultative symbiont Rickettsia to transmission of Tomato yellow leaf curl virus (TYLCV).

virus interaction
Bacteria

Candidatus Portiera aleyrodidarum is a primary symbiont that compensates for the deficient nutritional composition of the host's food sources.

nutrient provision
Buchnera spp.

Pseudomonadota

Bacteria

Buchnera spp. produces the GroEL chaperone protein, which binds to plant viruses and makes virus transmission efficient (virus interaction).

virus interaction
Rickettsia

Pseudomonadota

Bacteria

Rickettsia infection rate shows a significant negative correlation with the whitefly's drug resistance to imidacloprid and thiamethoxam.

pesticide metabolization
Rickettsia

Pseudomonadota

Bacteria

Rickettsia induces the expression of genes required for thermotolerance and increases host susceptibility to insecticides.

temparature adaptation
Hamiltonella

Pseudomonadota

Bacteria

The ability of B. tabaci Q to acquire, retain, and transmit TYLCV is affected by its S-symbiont Hamiltonella.

virus interaction
Arsenophonus

Pseudomonadota

Bacteria

Arsenophonus drives sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins.

amino acid provision B vitamin supplementation reproductive manipulation
Hamiltonella

Pseudomonadota

Bacteria

Hamiltonella drives sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins.

amino acid provision B vitamin supplementation reproductive manipulation
Hamiltonella defensa

Pseudomonadota

Bacteria

Hamiltonella defensa mediates whitefly–plant interactions by suppressing induced plant defenses in tomato.

plant defense modulation
Hamiltonella

Pseudomonadota

Bacteria

Hamiltonella increases the growth rate of its host Bemisia tabaci during periods of nutritional stress.

growth regulation
Portiera

Pseudomonadota

Bacteria

Portiera drives sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins.

amino acid provision B vitamin supplementation reproductive manipulation
Wolbachia

Pseudomonadota

Bacteria

Wolbachia leads to female bias and may affect host resistance, acting as a reproductive manipulator.

reproductive manipulation
Rickettsia RITBT

Pseudomonadota

Bacteria

Rickettsia RITBT slightly increased the efficiency of Bemisia tabaci in transmitting crimp virus.

virus interaction
Rickettsia

Pseudomonadota

Bacteria

Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains.

pathogen resistance
Cardinium

Bacteroidota

Bacteria

Candidatus Cardinium increases the thermal tolerance of the whitefly Bemisia tabaci.

temparature adaptation
Rickettsia

Pseudomonadota

Bacteria

Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype.

temparature adaptation
Hamiltonella

Pseudomonadota

Bacteria

Hamiltonella confers resistance to parasitoids and increases thermotolerance.

natural enemy resistance
Cardinium

Bacteroidota

Bacteria

Cardinium acts as a reproductive manipulator.

reproductive manipulation
Arsenophonus

Pseudomonadota

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Halomonas

Pseudomonadota

Bacteria

-

Hamiltonella

Pseudomonadota

Bacteria

-

Rickettsia

Pseudomonadota

Bacteria

-

Rickettsia africae

Pseudomonadota

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Rickettsia conorii

Pseudomonadota

Bacteria

-

Rickettsia felis

Pseudomonadota

Bacteria

-

Rickettsia massiliae

Pseudomonadota

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Bacteria

-

Rickettsia typhi

Pseudomonadota

Bacteria

-

Wolbachia

Pseudomonadota

Bacteria

-

Back to Table

Metagenome Information

0 records

Metagenome sequencing data associated with Bemisia tabaci

Run Platform Location Date BioProject

No metagenomes found

No metagenome records associated with this host species.

Amplicon Information

0 records

Amplicon sequencing data associated with Bemisia tabaci

Run Classification Platform Location Environment

No amplicons found

No amplicon records associated with this host species.

Related Articles

32 records

Research articles related to Bemisia tabaci

Title Authors Journal Year DOI
Li, YH; Peng, J; Wu, QJ ... Zhang, PJ; Qiu, BL
Journal of Economic Entomology
2024
10.1093/jee/toae066
Liu, Bing-Qi; Bao, Xi-Yu; Yan, Jin-Yang ... Chen, Zhan-Bo; Luan, Jun-Bo
Proceedings of the National Academy of Sciences
2024
10.1073/pnas.2406788121
Liu, Y; Yang, K; Wang, JC; Chu, D
INSECT SCIENCE
2023
10.1111/1744-7917.13086
Sun, X; Liu, BQ; Chen, ZB ... Hong, JS; Luan, JB
MBIO
2023
10.1128/mbio.02990-22
Kaur, R; Singh, S; Joshi, N
ENVIRONMENTAL ENTOMOLOGY
2022
10.1093/ee/nvac024
Fan, ZY; Liu, Y; He, ZQ ... Mandour, NS; Qiu, BL
Insects
2022
10.3390/insects13121161
El Hamss, H; Maruthi, MN; Ally, HM ... Colvin, J; Delatte, H
FRONTIERS IN MICROBIOLOGY
2022
10.3389/fmicb.2022.986226
Shi, PQ; Chen, XY; Chen, XS ... Liu, Y; Qiu, BL
FEMS MICROBIOLOGY ECOLOGY
2021
10.1093/femsec/fiab032
Yang, K; Yuan, MY; Liu, Y ... Zhang, YJ; Chu, D
PEST MANAGEMENT SCIENCE
2021
10.1002/ps.6543
Mohammed, MA; Karaca, MM; Döker, I; Karut, K
PHYTOPARASITICA
2020
10.1007/s12600-020-00812-9
Wang, HL; Lei, T; Wang, XW ... Liu, YQ; Liu, SS
ENVIRONMENTAL MICROBIOLOGY
2020
10.1111/1462-2920.14927
Kliot, A; Johnson, RS; MacCoss, MJ ... Heck, M; Ghanim, M
GIGASCIENCE
2020
10.1093/gigascience/giaa124
Ren, FR; Sun, X; Wang, TY ... Zhang, X; Luan, JB
The ISME Journal
2020
10.1038/s41396-020-0704-5
Lei, T; Zhao, J; Wang, HL; Liu, YQ; Liu, SS
Insect Science
2020
10.1111/1744-7917.12797
Wang, YB; Ren, FR; Yao, YL ... Xu, XR; Luan, JB
ISME JOURNAL
2020
10.1038/s41396-020-0717-0
Hu, FY; Tsai, CW
Insects
2020
10.3390/insects11080498
Wang, HL; Lei, T; Xia, WQ ... Colvin, J; Wang, XW
SCIENTIFIC REPORTS
2019
10.1038/s41598-019-42793-8
Skaljac, M; Kanakala, S; Zanic, K ... Pleic, IL; Ghanim, M
Insects
2017
10.3390/insects8040113
Li, SJ; Ahmed, MZ; Lv, N ... Huang, JL; Qiu, BL
ISME JOURNAL
2017
10.1038/ismej.2016.164
Zhu, DT; Xia, WQ; Rao, Q ... Ghanim, M; Wang, XW
INSECT SCIENCE
2016
10.1111/1744-7917.12367
Rollat-Farnier, PA; Santos-Garcia, D; Rao, Q ... Vavre, F; Mouton, L
GENOME BIOLOGY AND EVOLUTION
2015
10.1093/gbe/evv030
Rao, Q; Rollat-Farnier, PA; Zhu, DT ... Mouton, L; Wang, XW
BMC GENOMICS
2015
10.1186/s12864-015-1379-6
Su, Q; Oliver, KM; Xie, W ... Wang, SL; Zhang, YJ
FUNCTIONAL ECOLOGY
2015
10.1111/1365-2435.12405
Hendry, TA; Hunter, MS; Baltrus, DA
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
2014
10.1128/AEM.02447-14
Su, Q; Xie, W; Wang, SL ... Xu, BY; Zhang, YJ
PLOS ONE
2014
10.1371/journal.pone.0089002
Su, Q; Oliver, KM; Pan, HP ... Zhou, XG; Zhang, YJ
ENVIRONMENTAL ENTOMOLOGY
2013
10.1603/EN13182
Su, Q; Pan, HP; Liu, BM ... Xu, BY; Zhang, YJ
SCIENTIFIC REPORTS
2013
10.1038/srep01367
Jiang, ZF; Xia, FF; Johnson, KW ... White, KP; Ghanim, M
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
2013
10.1128/AEM.02976-12
Bing, XL; Yang, J; Zchori-Fein, E; Wang, XW; Liu, SS
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
2013
10.1128/AEM.03030-12
Santos-Garcia, D; Farnier, PA; Beitia, F ... Latorre, A; Silva, FJ
Journal of Bacteriology
2012
10.1128/jb.01793-12
Brumin, M; Kontsedalov, S; Ghanim, M
INSECT SCIENCE
2011
10.1111/j.1744-7917.2010.01396.x
Morin, S; Ghanim, M; Zeidan, M ... Verbeek, M; van den Heuvel, JFJM
Virology
1999
10.1006/viro.1999.9631