Bemisia tabaci
silverleaf whitefly or sweet potato whitefly
Bemisia tabaci is one of several species of whitefly that are currently important agricultural pests.The silverleaf whitefly thrives worldwide in tropical, subtropical, and less predominately in temperate habitats. Cold temperatures kill both the adults and the nymphs of the species. The silverleaf whitefly can be confused with other insects such as the common fruitfly, but with close inspection, the whitefly is slightly smaller and has a distinct wing color that helps to differentiate it from other insects.
Host Genome
ScaffoldGenome ID | Level | BUSCO Assessment |
---|---|---|
GCA_903994105.1 | Scaffold |
C:87.6%[S:84.9%,D:2.7%],F:2.6%,M:9.8%,n:1367
|
Download Genome Files
Related Symbionts
52 recordsSymbiont records associated with Bemisia tabaci
Classification | Function | Function Tags | Reference | |
---|---|---|---|---|
Rickettsia
Pseudomonadota |
Bacteria
|
Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks.Then the persistence of… |
Plant defense
|
|
Hamiltonella
Pseudomonadota |
Bacteria
|
Hamiltonella-infected whiteflies produced significantly more eggs, exhibited significantly higher nymphal survival, faster development times, and lar… |
Fertility
Growth and Development
|
|
Candidatus Cardinium
Bacteroidota |
Bacteria
|
Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly, decrease the … |
Plant defense
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
Rickettsia infection improved its host’s fitness by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), entomopathogenic … |
Pesticide metabolization
Antimicrobials
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
Rickettsia infection resulted in increased whitefly fecundity and female bias by stimulating juvenile hormone synthesis. The production of more femal… |
Nutrient provision
|
|
Candidatus Hamiltonella defensa
Pseudomonadota |
Bacteria
|
the genome of Hamiltonella revealed that this secondary symbiont can not only provide vitamins and cofactors, but also complete the missing steps of … |
Nutrient provision
|
|
Arsenophonus
Pseudomonadota |
Bacteria
|
The GroEL proteins produced by Arsenophonus in B. tabaci (Asia II species) was found to interact with the coat protein of begomovirus and therefore f… |
Pathogen interaction
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
Rickettsia plays an essential role in energy metabolism, and nutrient synthesis in the B. tabaci MEAM1, and depends on metabolites obtained from the … |
Nutrient provision
|
|
Portiera aleyrodidarum
Pseudomonadota |
Bacteria
|
synthesizing essential amino acid (e.g. tryptophan, leucine and L-Isoleucine), Bemisia tabaci provides vital nutritional support for growth, developm… |
Nutrient provision
Growth and Development
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
Both Bemisia tabaci B and MED show a strong link of the facultative symbiont Rickettsia to transmission of Tomato yellow leaf curl virus (TYLCV) |
Pathogen interaction
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
There was a significant negative correlation between drug resistance and infection rate of Rickettsia for imidacloprid and thiamethoxam |
Pesticide metabolization
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
Rickettsia induces the expression of genes required for thermotolerance and increases its susceptibility to insecticides. |
||
Arsenophonus
Pseudomonadota |
Bacteria
|
Arsenophonus plays a key role in the retention and transmission of CLCuV in the Asia II-1 genetic group of B. tabaci |
Pathogen interaction
|
|
Candidatus Portiera aleyrodidarum
Pseudomonadota |
Bacteria
|
encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids, |
Nutrient provision
|
|
Hamiltonella
Pseudomonadota |
Bacteria
|
the ability of B. tabaci Q to acquire, retain and transmit TYLCV is affected by its S-symbiont Hamiltonella |
Pathogen interaction
|
|
Buchnera spp.
Pseudomonadota |
Bacteria
|
Produces GroEL chaperone protein that binds to plant viruses and makes virus transmission efficient |
Pathogen interaction
|
|
Candidatus Portiera aleyrodidarum
Pseudomonadota |
Bacteria
|
a primary symbiont, which compensates for the deficient nutritional composition of its food sources |
Nutrient provision
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains |
Pathogen interaction
|
|
Arsenophonus
Pseudomonadota |
Bacteria
|
drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins |
Nutrient provision
Reproductive manipulation
|
|
Hamiltonella
Pseudomonadota |
Bacteria
|
drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins |
Nutrient provision
Reproductive manipulation
|
|
Portiera
Pseudomonadota |
Bacteria
|
drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins |
Nutrient provision
Reproductive manipulation
|
|
Hamiltonella
Pseudomonadota |
Bacteria
|
increases the growth rate of its host Bemisia tabaci during periods of nutritional stress |
Growth and Development
|
|
Rickettsia RITBT
Pseudomonadota |
Bacteria
|
RITBT slightly increased the efficiency of Bemisia tabaci in transmitting crimp virus |
Pathogen interaction
|
|
Hamiltonella defensa
Pseudomonadota |
Bacteria
|
mediates whitefly–plant interactions by suppressing induced plant defences in tomato |
Plant defense
|
|
Candidatus Portiera aleyrodidarum
Pseudomonadota |
Bacteria
|
Portiera determined vitellogenin (Vg) localization in bacteriocytes of whiteflies |
||
Hamiltonella
Pseudomonadota |
Bacteria
|
Hamiltonella confers resistance to parasitoids and increases thermotolerance |
Natural enemy resistance
|
|
Rickettsia
Pseudomonadota |
Bacteria
|
influences thermotolerance in the whitefly Bemisia tabaci B biotype |
||
Cardinium
Bacteroidota |
Bacteria
|
ardinium can increase the thermal tolerance of whitefly |
||
Wolbachia
Pseudomonadota |
Bacteria
|
leads to female bias and may affect host resistance |
Reproductive manipulation
|
|
Cardinium
Bacteroidota |
Bacteria
|
Reproductive manipulators |
Reproductive manipulation
|
|
Arsenophonus
Pseudomonadota |
Bacteria
|
- |
||
Bacteria
|
- |
|||
Candidatus Hamiltonella defensa
Pseudomonadota |
Bacteria
|
- |
||
Candidatus Hemipteriphilus asiaticus
Pseudomonadota |
Bacteria
|
- |
||
Candidatus Portiera aleyrodidarum WB
Pseudomonadota |
Bacteria
|
- |
||
Candidatus Rickettsia_Torix_Bemisia_tabaci
Pseudomonadota |
Bacteria
|
- |
||
Halomonas
Pseudomonadota |
Bacteria
|
- |
||
Hamiltonella
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia africae
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia bellii RML369-C
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia canadensis str. CA41None
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia canadensis str. McKiel
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia conorii
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia felis
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia massiliae
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia MEAM1 China
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia MEAM1 Israel
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia prowazekii
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia rickettsii
Pseudomonadota |
Bacteria
|
- |
||
Rickettsia typhi
Pseudomonadota |
Bacteria
|
- |
||
Wolbachia
Pseudomonadota |
Bacteria
|
- |
Metagenome Information
0 recordsMetagenome sequencing data associated with Bemisia tabaci
Run | Platform | Location | Date | BioProject |
---|---|---|---|---|
No metagenomes foundNo metagenome records associated with this host species. |
Amplicon Information
0 recordsAmplicon sequencing data associated with Bemisia tabaci
Run | Classification | Platform | Location | Environment |
---|---|---|---|---|
No amplicons foundNo amplicon records associated with this host species. |
Related Articles
32 recordsResearch articles related to Bemisia tabaci
Title | Authors | Journal | Year | DOI |
---|---|---|---|---|
Li, YH; Peng, J; Wu, QJ ... Zhang, PJ; Qiu, BL
|
Journal of Economic Entomology
|
2024
|
10.1093/jee/toae066 | |
Liu, Bing-Qi; Bao, Xi-Yu; Yan, Jin-Yang ... Chen, Zhan-Bo; Luan, Jun-Bo
|
Proceedings of the National Academy of Sciences
|
2024
|
10.1073/pnas.2406788121 | |
Liu, Y; Yang, K; Wang, JC; Chu, D
|
INSECT SCIENCE
|
2023
|
10.1111/1744-7917.13086 | |
Sun, X; Liu, BQ; Chen, ZB ... Hong, JS; Luan, JB
|
MBIO
|
2023
|
10.1128/mbio.02990-22 | |
Kaur, R; Singh, S; Joshi, N
|
ENVIRONMENTAL ENTOMOLOGY
|
2022
|
10.1093/ee/nvac024 | |
Fan, ZY; Liu, Y; He, ZQ ... Mandour, NS; Qiu, BL
|
Insects
|
2022
|
10.3390/insects13121161 | |
El Hamss, H; Maruthi, MN; Ally, HM ... Colvin, J; Delatte, H
|
FRONTIERS IN MICROBIOLOGY
|
2022
|
10.3389/fmicb.2022.986226 | |
Shi, PQ; Chen, XY; Chen, XS ... Liu, Y; Qiu, BL
|
FEMS MICROBIOLOGY ECOLOGY
|
2021
|
10.1093/femsec/fiab032 | |
Yang, K; Yuan, MY; Liu, Y ... Zhang, YJ; Chu, D
|
PEST MANAGEMENT SCIENCE
|
2021
|
10.1002/ps.6543 | |
Mohammed, MA; Karaca, MM; Döker, I; Karut, K
|
PHYTOPARASITICA
|
2020
|
10.1007/s12600-020-00812-9 | |
Wang, HL; Lei, T; Wang, XW ... Liu, YQ; Liu, SS
|
ENVIRONMENTAL MICROBIOLOGY
|
2020
|
10.1111/1462-2920.14927 | |
Kliot, A; Johnson, RS; MacCoss, MJ ... Heck, M; Ghanim, M
|
GIGASCIENCE
|
2020
|
10.1093/gigascience/giaa124 | |
Ren, FR; Sun, X; Wang, TY ... Zhang, X; Luan, JB
|
The ISME Journal
|
2020
|
10.1038/s41396-020-0704-5 | |
Lei, T; Zhao, J; Wang, HL; Liu, YQ; Liu, SS
|
Insect Science
|
2020
|
10.1111/1744-7917.12797 | |
Wang, YB; Ren, FR; Yao, YL ... Xu, XR; Luan, JB
|
ISME JOURNAL
|
2020
|
10.1038/s41396-020-0717-0 | |
Hu, FY; Tsai, CW
|
Insects
|
2020
|
10.3390/insects11080498 | |
Wang, HL; Lei, T; Xia, WQ ... Colvin, J; Wang, XW
|
SCIENTIFIC REPORTS
|
2019
|
10.1038/s41598-019-42793-8 | |
Skaljac, M; Kanakala, S; Zanic, K ... Pleic, IL; Ghanim, M
|
Insects
|
2017
|
10.3390/insects8040113 | |
Li, SJ; Ahmed, MZ; Lv, N ... Huang, JL; Qiu, BL
|
ISME JOURNAL
|
2017
|
10.1038/ismej.2016.164 | |
Zhu, DT; Xia, WQ; Rao, Q ... Ghanim, M; Wang, XW
|
INSECT SCIENCE
|
2016
|
10.1111/1744-7917.12367 | |
Rollat-Farnier, PA; Santos-Garcia, D; Rao, Q ... Vavre, F; Mouton, L
|
GENOME BIOLOGY AND EVOLUTION
|
2015
|
10.1093/gbe/evv030 | |
Rao, Q; Rollat-Farnier, PA; Zhu, DT ... Mouton, L; Wang, XW
|
BMC GENOMICS
|
2015
|
10.1186/s12864-015-1379-6 | |
Su, Q; Oliver, KM; Xie, W ... Wang, SL; Zhang, YJ
|
FUNCTIONAL ECOLOGY
|
2015
|
10.1111/1365-2435.12405 | |
Hendry, TA; Hunter, MS; Baltrus, DA
|
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
|
2014
|
10.1128/AEM.02447-14 | |
Su, Q; Xie, W; Wang, SL ... Xu, BY; Zhang, YJ
|
PLOS ONE
|
2014
|
10.1371/journal.pone.0089002 | |
Su, Q; Oliver, KM; Pan, HP ... Zhou, XG; Zhang, YJ
|
ENVIRONMENTAL ENTOMOLOGY
|
2013
|
10.1603/EN13182 | |
Su, Q; Pan, HP; Liu, BM ... Xu, BY; Zhang, YJ
|
SCIENTIFIC REPORTS
|
2013
|
10.1038/srep01367 | |
Jiang, ZF; Xia, FF; Johnson, KW ... White, KP; Ghanim, M
|
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
|
2013
|
10.1128/AEM.02976-12 | |
Bing, XL; Yang, J; Zchori-Fein, E; Wang, XW; Liu, SS
|
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
|
2013
|
10.1128/AEM.03030-12 | |
Santos-Garcia, D; Farnier, PA; Beitia, F ... Latorre, A; Silva, FJ
|
Journal of Bacteriology
|
2012
|
10.1128/jb.01793-12 | |
Brumin, M; Kontsedalov, S; Ghanim, M
|
INSECT SCIENCE
|
2011
|
10.1111/j.1744-7917.2010.01396.x | |
Morin, S; Ghanim, M; Zeidan, M ... Verbeek, M; van den Heuvel, JFJM
|
Virology
|
1999
|
10.1006/viro.1999.9631 |